• * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
Country
Plastics are widely used in our economy and each year, at least 350-400 million tons are being produced at a global level. Due to poor recycling and low circular use, tens of millions of tons accumulate annually in marine and terrestrial environments. While it has become obvious that micro and macroplastics contaminate our environments recent research has identified few bacteria and fungi actively degrading plastics by enzymatic reactions. In general these are promiscuous enzymes (hydrolases) acting on low crystaline and mostly low density polymers of PET, ester-based PUR and oligomers of PA. Notably today, no enzymes have been characterized on a biochemical level for polymeric and crystaline PE, ether-based PUR, PS, PVC, PP. While many publications report on plastic degradation often, no convincing biochemical data have been published. Therefore the PAZy database lists exclusively biochemically characterized plastic-active enzymes. Predicted and putative enzymes that were not characterized on a biochemical, functional or structural level are not included in the PAZy database. The entries are manually curated.
Country
The server ESTHER (ESTerases and alpha/beta-Hydrolase Enzymes and Relatives) is dedicated to the analysis of proteins or protein domains belonging to the superfamily of alpha/beta-hydrolases, exemplified by the cholinesterases.
Rhea is a freely available and comprehensive resource of expert-curated biochemical reactions. It has been designed to provide a non-redundant set of chemical transformations for applications such as the functional annotation of enzymes, pathway inference and metabolic network reconstruction. There are three types of reaction participants (reactants and products): Small molecules, Rhea polymers, Generic compounds. All three types of reaction participants are linked to the ChEBI database (Chemical Entities of Biological Interest) which provides detailed information about structure, formula and charge. Rhea provides built-in validations that ensure both mass and charge balance of the reactions. We have populated the database with the reactions found in the enzyme classification (i.e. in the IntEnz and ENZYME databases), extending it with additional known reactions of biological interest. While the main focus of Rhea is enzyme-catalysed reactions, other biochemical reactions (including those that are often termed "spontaneous") also are included.