Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 42 result(s)
NASA’s Precipitation Measurement Missions – TRMM and GPM – provide advanced information on rain and snow characteristics and detailed three-dimensional knowledge of precipitation structure within the atmosphere, which help scientists study and understand Earth's water cycle, weather and climate.
OBIS strives to document the ocean's diversity, distribution and abundance of life. Created by the Census of Marine Life, OBIS is now part of the Intergovernmental Oceanographic Commission (IOC) of UNESCO, under its International Oceanographic Data and Information Exchange (IODE) programme
The World Ocean Database (WOD) is a collection of scientifically quality-controlled ocean profile and plankton data that includes measurements of temperature, salinity, oxygen, phosphate, nitrate, silicate, chlorophyll, alkalinity, pH, pCO2, TCO2, Tritium, Δ13Carbon, Δ14Carbon, Δ18Oxygen, Freon, Helium, Δ3Helium, Neon, and plankton. WOD contains all data of "World Data Service Oceanography" (WDS-Oceanography).
<<<!!!<<< This repository is no longer available. >>>!!!>>> The programme "International Oceanographic Data and Information Exchange" (IODE) of the "Intergovernmental Oceanographic Commission" (IOC) of UNESCO was established in 1961. Its purpose is to enhance marine research, exploitation and development, by facilitating the exchange of oceanographic data and information between participating Member States, and by meeting the needs of users for data and information products.
The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remote Operated Vehicle (ROV) Jason 2, and the Autonomous Underwater Vehicle (AUV) Sentry. Data acquired with these platforms is provided both to the science party on each expedition, and to the Woods Hole Oceanographic Institution (WHOI) Data Library.
NWS/NCEP/Climate Prediction Center delivers climate prediction, monitoring, and diagnostic products for timescales from weeks to years to the Nation and the global community for the protection of life and property and the enhancement of the economy. The goal of the CPC website is to provide easy and comprehensive access to data and products that serve our mission. We serve a broad audience ranging from government to non-government entities like academia, NGO’s, and the public and private sectors. Specific sectors include agriculture, energy, health, transportation, emergency managers, etc.
Climate Data Record (CDR) is a time series of measurements of sufficient length, consistency and continuity to determine climate variability and change. The fundamental CDRs include sensor data, such as calibrated radiances and brightness temperatures, that scientists have improved and quality-controlled along with the data used to calibrate them. The thematic CDRs include geophysical variables derived from the fundamental CDRs, such as sea surface temperature and sea ice concentration, and they are specific to various disciplines.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
Surface air temperature change is a primary measure of global climate change. The GISTEMP project started in the late 1970s to provide an estimate of the changing global surface air temperature which could be compared with the estimates obtained from climate models simulating the effect of changes in atmospheric carbon dioxide, volcanic aerosols, and solar irradiance. The continuing analysis updates global temperature change from the late 1800s to the present.
>>>!!!<<< On June 1, 2020, the Academic Seismic Portal repositories at UTIG were merged into a single collection hosted at Lamont-Doherty Earth Observatory. Content here was removed July 1, 2020. Visit the Academic Seismic Portal @LDEO! https://www.marine-geo.org/collections/#!/collection/Seismic#summary (https://www.re3data.org/repository/r3d100010644) >>>!!!<<<
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts – which were formerly sent based only on event magnitude and location, or population exposure to shaking – now will also be generated based on the estimated range of fatalities and economic losses. PAGER uses these earthquake parameters to calculate estimates of ground shaking by using the methodology and software developed for ShakeMaps. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, processes solar radiation data currently submitted from more than 500 stations located in 56 countries and operates an archive with more than 1200 stations listed in its catalogue. The WRDC is the central depository of the measured components such as: global, diffuse and direct solar radiation, downward atmospheric radiation, net total and terrestrial surface radiation (upward), spectral radiation components (instantaneous fluxes), and sunshine duration, on hourly, daily or monthly basis.
As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map is a collaborative effort among the USGS and other Federal, State, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products and services, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added within the viewer or brought in with The National Map data into a Geographic Information System to create specific types of maps or map views.
Greenland Environmental Observatory (GEOSummit) provides long term year round data on core atmospheric measurements, spatial phenomena, ice sheets, and the Arctic Environment. These data are available to researchers through the National Science Foundation's Science Coordination Office (SCO) which coordinates all research at GEOSummit. Currently there is not a central platform for multi-collaborator data distribution. For specific information related to research it is recommended to contact investigators directly.
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
Central data management of the USGS for water data that provides access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa and the Commonwealth of the Northern Mariana Islands. Includes data on water use and quality, groundwater, and surface water.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
DATA.NASA.GOV is NASA's clearinghouse site for open-data provided to the public. Tens of thousands of datasets are available for you. This site is a continually growing catalog of publicly available NASA Datasets, APIs, Visualizations, and more.
ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).
The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).
The MGDS Academic Seismic Portal at Lamont-Doherty Earth Observatory (ASP-LDEO), now part of the IEDA Data Facility, was initiated in 2003 to preserve and provide open access to multi-channel seismic (MCS) and single channel seismic (SCS) field data collected for academic research supported by the US National Science Foundation. Multi-channel data are primarily from the marine seismic vessels operated by Lamont-Doherty Earth Observatory of Columbia University. Modern single channel seismic data from other vessels including the R/V Palmer and USCG Healy, as well as data from portable seismic systems, are also served. The development of the Academic Seismic Portal has focused on the need to recover high value MCS data from older surveys as well as to establish sustainable procedures for preservation of data from modern programs. During the final two years of R/V Ewing operations, procedures were established for routine transfer of MCS data along with navigation and acquisition parameters, and other needed documentation to the ASP. Transfer of seismic data and acquisition information is now routine for the National Marine Seismic Facility, the R/V Marcus G. Langseth, which began science operations in February 2008. Data are documented and incorporated into the data system with full access restrictions protecting the scientists' rights to exclusive access during the proprietary hold period. Submission of data to the ASP helps ensure that NSF requirements for data sharing as outlined in the NSF OCE Data Policy are satisfied. Data from the Academic Seismic Portal at UTIG has been migrated to LDEO. As we continue to verify the accuracy and completeness of this data, there may be temporary issues with some seismic metadata and web services.
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. IODP depends on facilities funded by three platform providers with financial contributions from five additional partner agencies. Together, these entities represent 26 nations whose scientists are selected to staff IODP research expeditions conducted throughout the world's oceans. IODP expeditions are developed from hypothesis-driven science proposals aligned with the program's science plan Illuminating Earth's Past, Present, and Future. The science plan identifies 14 challenge questions in the four areas of climate change, deep life, planetary dynamics, and geohazards. Until 2013 under the name: International Ocean Drilling Program.