Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
The miRBase database is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download. The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results.
The project aims to examine and index the genomic diversity through the generation of complete mitochondrial and nuclear genome sequences of sharks and rays of the Pacific Rim. There is a huge diversity of elasmobranch fishes in this region, but many species are under threat because of poor management and conservation measures in many countries. It is absolutely critical that species’ identities are correct for conservation and fisheries management purposes. This project will provide this clarity of identity for both charismatic and commercially important species through the inclusion of ‘genetypes’ (ie., BioVouchers) and the application of genetic tools that utilize whole mitochondrial and nuclear genome sequences.
The Hymenoptera Genome Database is a genome informatics resource that supports the research of insects of the order Hymenoptera (e.g. bees, wasps, ants). HGD provides tools for data mining (HymenopteraMine), sequence searching (BLAST), genome browsing (JBrowse), genome annotation (Apollo) and data download. Available through the navigation bar on the HGD Home page are the archives Ant Genomes Portal, BeeBase, and NasoniaBase which will not be updated.