Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 29 result(s)
The Durham High Energy Physics Database (HEPData), formerly: the Durham HEPData Project, has been built up over the past four decades as a unique open-access repository for scattering data from experimental particle physics. It currently comprises the data points from plots and tables related to several thousand publications including those from the Large Hadron Collider (LHC). The Durham HepData Project has for more than 25 years compiled the Reactions Database containing what can be loosly described as cross sections from HEP scattering experiments. The data comprise total and differential cross sections, structure functions, fragmentation functions, distributions of jet measures, polarisations, etc... from a wide range of interactions. In the new HEPData site (hepdata.net), you can explore new functionalities for data providers and data consumers, as well as the submission interface. HEPData is operated by CERN and IPPP at Durham University and is based on the digital library framework Invenio.
The Research Collection is ETH Zurich's publication platform. It unites the functions of a university bibliography, an open access repository and a research data repository within one platform. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit research data from all domains. They can publish data as a standalone publication, publish it as supplementary material for an article, dissertation or another text, share it with colleagues or a research group, or deposit it for archiving purposes. Research-data-specific features include flexible access rights settings, DOI registration and a DOI preview workflow, content previews for zip- and tar-containers, as well as download statistics and altmetrics for published data. All data uploaded to the Research Collection are also transferred to the ETH Data Archive, ETH Zurich’s long-term archive.
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
Established in 1965, the CSD is the world’s repository for small-molecule organic and metal-organic crystal structures. Containing the results of over one million x-ray and neutron diffraction analyses this unique database of accurate 3D structures has become an essential resource to scientists around the world. The CSD records bibliographic, chemical and crystallographic information for:organic molecules, metal-organic compounds whose 3D structures have been determined using X-ray diffraction, neutron diffraction. The CSD records results of: single crystal studies, powder diffraction studies which yield 3D atomic coordinate data for at least all non-H atoms. In some cases the CCDC is unable to obtain coordinates, and incomplete entries are archived to the CSD. The CSD includes crystal structure data arising from: publications in the open literature and Private Communications to the CSD (via direct data deposition). The CSD contains directly deposited data that are not available anywhere else, known as CSD Communications.
Country
Rodare is the institutional research data repository at HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Rodare allows HZDR researchers to upload their research software and data and enrich those with metadata to make them findable, accessible, interoperable and retrievable (FAIR). By publishing all associated research software and data via Rodare research reproducibility can be improved. Uploads receive a Digital Object Identfier (DOI) and can be harvested via a OAI-PMH interface.
ETH Data Archive is ETH Zurich's long-term preservation solution for digital information such as research data, digitised content, archival records, or images. It serves as the backbone of data curation and for most of its content, it is a “dark archive” without public access. In this capacity, the ETH Data Archive also archives the content of ETH Zurich’s Research Collection which is the primary repository for members of the university and the first point of contact for publication of data at ETH Zurich. All data that was produced in the context of research at the ETH Zurich, can be published and archived in the Research Collection. An automated connection to the ETH Data Archive in the background ensures the medium to long-term preservation of all publications and research data. Direct access to the ETH Data Archive is intended only for customers who need to deposit software source code within the framework of ETH transfer Software Registration. Open Source code packages and other content from legacy workflows can be accessed via ETH Library @ swisscovery (https://library.ethz.ch/en/).
The figshare service for The Open University was launched in 2016 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing metadata alongside datasets. Additionally, every uploaded item receives a Digital Object Identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
The Open Science Framework (OSF) is part network of research materials, part version control system, and part collaboration software. The purpose of the software is to support the scientist's workflow and help increase the alignment between scientific values and scientific practices. Document and archive studies. Move the organization and management of study materials from the desktop into the cloud. Labs can organize, share, and archive study materials among team members. Web-based project management reduces the likelihood of losing study materials due to computer malfunction, changing personnel, or just forgetting where you put the damn thing. Share and find materials. With a click, make study materials public so that other researchers can find, use and cite them. Find materials by other researchers to avoid reinventing something that already exists. Detail individual contribution. Assign citable, contributor credit to any research material - tools, analysis scripts, methods, measures, data. Increase transparency. Make as much of the scientific workflow public as desired - as it is developed or after publication of reports. Find public projects here. Registration. Registering materials can certify what was done in advance of data analysis, or confirm the exact state of the project at important points of the lifecycle such as manuscript submission or at the onset of data collection. Discover public registrations here. Manage scientific workflow. A structured, flexible system can provide efficiency gain to workflow and clarity to project objectives, as pictured.
<<<!!!<<< The repository is no longer available. The printversion see: https://www.taylorfrancis.com/books/mono/10.1201/9781003220435/encyclopedia-astronomy-astrophysics-murdin >>>!!!>>> This unique resource covers the entire field of astronomy and astrophysics and this online version includes the full text of over 2,750 articles, plus sophisticated search and retrieval functionality, links to the primary literature, and is frequently updated with new material. An active editorial team, headed by the Encyclopedia's editor-in-chief, Paul Murdin, oversees the continual commissioning, reviewing and loading of new and revised content.In a unique collaboration, Nature Publishing Group and Institute of Physics Publishing published the most extensive and comprehensive reference work in astronomy and astrophysics in both print and online formats. First published as a four volume print edition in 2001, the initial Web version went live in 2002, and contained the original print material and was rapidly supplemented with numerous updates and newly commissioned material. Since July 2006 the Encyclopedia is published solely by Taylor & Francis.
CORD is Cranfield University's research data repository, for secure preservation of institutional research data outputs. Cranfield is an exclusively postgraduate university that is a global leader for transformational research in technology and management. We are focused on the specialist themes of aerospace, defence and security, energy and power, environment and agrifood, manufacturing, transport systems, and water. The Cranfield School of Management is world leader in management education and research.
ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence.
The Arctic Data Center is the primary data and software repository for the Arctic section of NSF Polar Programs. The Center helps the research community to reproducibly preserve and discover all products of NSF-funded research in the Arctic, including data, metadata, software, documents, and provenance that links these together. The repository is open to contributions from NSF Arctic investigators, and data are released under an open license (CC-BY, CC0, depending on the choice of the contributor). All science, engineering, and education research supported by the NSF Arctic research program are included, such as Natural Sciences (Geoscience, Earth Science, Oceanography, Ecology, Atmospheric Science, Biology, etc.) and Social Sciences (Archeology, Anthropology, Social Science, etc.). Key to the initiative is the partnership between NCEAS at UC Santa Barbara, DataONE, and NOAA’s NCEI, each of which bring critical capabilities to the Center. Infrastructure from the successful NSF-sponsored DataONE federation of data repositories enables data replication to NCEI, providing both offsite and institutional diversity that are critical to long term preservation.
The University of Guelph Research Data Repositories provide long-term stewardship of research data created at or in cooperation with the University of Guelph. The Data Repositories are guided by the FAIR Guiding Principles for scientific data management and stewardship which aim to improve the Findability, Accessibility, Interoperability and Reuse of research data. The Data Repositories is composed of two main collections: the Agri-environmental Research Data collection which houses agricultural and environmental research data, and the Cross-disciplinary Research Data collection which houses all other disciplinary research data.
<<<!!!<<< This repository is no longer available. >>>!!!>>>The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.