Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 25 result(s)
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
GRID-Geneva is a unique platform providing analyses and solutions for a wide range of environmental issues. GRID-Geneva serves primarily the needs of its three institutional partners - UNEP, the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe) - which are linked by an ongoing, multi-year “Partnership Agreement”, along with other local-to-global stakeholders. GRID-Geneva is also a bilingual English and French centre and the key francophone link within the global GRID network of centres. GRID-Geneva is a key centre of geo-spatial know-how, with strengths in GIS, IP/remote sensing and statistical analyses, integrated through modern spatial data infrastructures and web applications. Working at the interface between scientific information and policy/decision-making, GRID-Geneva also helps to develop capacities in these fields of expertise among target audiences, countries and other groups.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
CORD is Cranfield University's research data repository, for secure preservation of institutional research data outputs. Cranfield is an exclusively postgraduate university that is a global leader for transformational research in technology and management. We are focused on the specialist themes of aerospace, defence and security, energy and power, environment and agrifood, manufacturing, transport systems, and water. The Cranfield School of Management is world leader in management education and research.
Country
The Australian Antarctic Data Centre (AADC) provides data collection and data management services in Australia's Antarctic Science Program. The AADC manages science data from Australia's Antarctic research, maps Australia's areas of interest in the Antarctic region, manages Australia's Antarctic state of the environment reporting, and provides advice and education and a range of other products.
Country
NSSDC is the nation-level space science data center which recognized by the Ministry of Science and Technology of China. As a repository for space science data, NSSDC assumes the responsibility of the long-term stewardship and offering a reliable service of space science data in China. It also has been the Chinese center for space science of the World Data Center (WDC) since 1988. In 2013, NSSDC became a regular member of World Data System. Data resources are concentrated in the following fields of space physics and space environment, space astronomy, lunar and planetary science, space application and engineering. In space physics, the NSSDC maintains space-based observation data and ground-based observation data of the middle and upper atmosphere, ionosphere and earth surface, from Geo-space Double Star Exploration Program and Meridian Project. In space astronomy, NSSDC archived pointed observation data of Hard X-ray Modulation Telescope. In lunar and planetary science, space application and engineering, NSSDC also collects detection data of Chang’E from Lunar Exploration Program and science products of BeiDou satellites.
Country
National Institute of Information and Communications Technology (NICT) has taken charge of the WDC for Ionosphere. WDC for Ionosphere archives ionospheric data and metadata from approximately 250 stations across the globe.
Country
Various information, such as xylarium data with wood specimens collected since 1944, atmospheric observation data using the MU radar and other instruments, space-plasma data observed with GEOTAIL satellite, are now combined as Database of Humanosphere and served for public use. Proposals for scientific and technological use are always welcome.
Provides quick, uncluttered access to information about Heliophysics research data that have been described with SPASE resource descriptions.
Country
The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies) involves the identification and study of a statistically significant sample of the most isolated galaxies in the local Universe. Our goal is to quantify the properties of different phases of the interstellar medium in these galaxies which are likely to be least affected by their external environment.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.
Country
Standard, reference material is used for measurement process control and reliability evaluation of measurement results, and plays a key role in important fields such as food safety, international and domestic trade, medicine and health, and environmental monitoring. In order to realize the efficient use and sharing of reference material resources in the whole society, the Institute of Chemistry of China Institute of Metrology (formerly the National Reference Material Research Center), with the support of the Ministry of Science and Technology, launched the "National Reference Material Information Service" at the end of 2003.
The Solar Dynamics Observatory (SDO) studies the solar atmosphere on small scales of space and time, in multiple wavelengths. This is a searchable database of all SDO data, including citizen scientist images, space weather and near real time data, and helioseismology data.
<<<!!!<<<The repository is offline >>>!!!>>> The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership based at the NASA Goddard Space Flight Center in Greenbelt, Maryland and a component of the National Space Weather Program. The CCMC provides, to the international research community, access to modern space science simulations. In addition, the CCMC supports the transition to space weather operations of modern space research models.
The figshare service for The Open University was launched in 2016 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing metadata alongside datasets. Additionally, every uploaded item receives a Digital Object Identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
!!! We will terminate ASTER Products Distribution Service in March 2016 although we have been providing ASTER Products since November 20, 2000. !!! ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) is the high efficiency optical imager which covers a wide spectral region from the visible to the thermal infra-red by 14 spectral bands. ASTER acquires data which can be used in various fields in earth science. ASTER was launched from Vandenberg Air Force Base in California, USA in 1999 aboard the Terra, which is the first satellite of the EOS Project. The purpose of ASTER project is to make contributions to extend the understanding of local and regional phenomena on the Earth surface and its atmosphere. The followings are ASTER related information, which includes ASTER instrument, ASTER Ground Data System, ASTER Science Activities, ASTER Data Distribution and so on. ASTER Search provides services to search and order ASTER data products on the website.
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.