Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
The goal of the NeuroElectro Project is to extract information about the electrophysiological properties (e.g. resting membrane potentials and membrane time constants) of diverse neuron types from the existing literature and place it into a centralized database.
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
The CONP portal is a web interface for the Canadian Open Neuroscience Platform (CONP) to facilitate open science in the neuroscience community. CONP simplifies global researcher access and sharing of datasets and tools. The portal internalizes the cycle of a typical research project: starting with data acquisition, followed by processing using already existing/published tools, and ultimately publication of the obtained results including a link to the original dataset. From more information on CONP, please visit https://conp.ca
InnateDB is a publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures an improved coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralised resource. The database can be mined as a knowledgebase or used with our integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response.
Biological collections are replete with taxonomic, geographic, temporal, numerical, and historical information. This information is crucial for understanding and properly managing biodiversity and ecosystems, but is often difficult to access. Canadensys, operated from the Université de Montréal Biodiversity Centre, is a Canada-wide effort to unlock the biodiversity information held in biological collections.
Country
ALEXA is a microarray design platform for 'alternative expression analysis'. This platform facilitates the design of expression arrays for analysis of mRNA isoforms generated from a single locus by the use of alternative transcription initiation, splicing and polyadenylation sites. We use the term 'ALEXA' to describe a collection of novel genomic methods for 'alternative expression' analysis. 'Alternative expression' refers to the identification and quantification of alternative mRNA transcripts produced by alternative transcript initiation, alternative splicing and alternative polyadenylation. This website provides supplementary materials, source code and other downloads for recent publications describing our studies of alternative expression (AE). Most recently we have developed a method, 'ALEXA-Seq' and associated resources for alternative expression analysis by massively parallel RNA sequencing.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.