Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 104 result(s)
The GTN-P database is an object-related database open for a diverse range of data. Because of the complexity of the PAGE21 project, data provided in the GTN-P management system are extremely diverse, ranging from active-layer thickness measurements once per year to flux measurement every second and everthing else in between. The data can be assigned to two broad categories: Quantitative data which is all data that can be measured numerically. Quantitative data comprise all in situ measurements, i.e. permafrost temperatures and active layer thickness (mechanical probing, frost/thaw tubes, soil temperature profiles). Qualitative data (knowledge products) are observations not based on measurements, such as observations on soils, vegetation, relief, etc.
HydroShare is a system operated by The Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) that enables users to share and publish data and models in a variety of flexible formats, and to make this information available in a citable, shareable and discoverable manner. HydroShare includes a repository for data and models, and tools (web apps) that can act on content in HydroShare providing users with a gateway to high performance computing and computing in the cloud. With HydroShare you can: share data and models with colleagues; manage access to shared content; share, access, visualize, and manipulate a broad set of hydrologic data types and models; publish data and models and obtain a citable digital object identifier (DOI); aggregate resources into collections; discover and access data and models published by others; use the web services application programming interface (API) to programmatically access resources; and use integrated web applications to visualize, analyze and run models with data in HydroShare.
Country
Base of Knowledge Wrocław University of Environmental and Life Sciences / Research Data Repository is an institutional open research data repository, offering the possibility to deposit datasets (as well as publications) created by researchers, PhD candidates and students of Wrocław University of Environmental and Life Sciences. It is intended for scientific data from the disciplines related to the University’s profile. It is a platform where research data can be safely collected, stored and openly shared with others, obtaining a permanent Digital Object Identifier (DOI) for each dataset and choosing a data usage license. Research Data Repository applies the FAIR Principles (data is findable, accessible, interoperable and reusable).
Country
The geothermal information system (GeotIS) provides information and data compilations on deep aquifers in Germany relevant for geothermal exploitation. GeotIS is a public internet based information system and satisfies the demand for a comprehensive, largely scale-independent form of a geothermal atlas which can be continuously updated. GeotIS helps users identify geothermal potentials by visualizing temperature, hydraulic properties and depth levels of relevant stratigraphic units. A sophisticated map interface simplifies the navigation to all areas of interest. An additional component contains a catalogue of all geothermal installations in Germany. The primary objective of this project is to improve the quality of geothermal-plant project-planning and the estimation of the exploration risk for geothermal projects on selectable locations. However, concrete, location-specific analyses still remain the task of local feasibility studies.