Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan and the C.U. Ariëns Kappers brain collection from Amsterdam Netherlands.Introducing online atlases of the brains of humans, sheep, dolphins, and other animals. A world resource for illustrations of whole brains and stained sections from a great variety of mammals
Country
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes.For both Chromatin- immunoprecipation Transcription Factors and Histone modifications. Sequence files and the associated probability files are also provided.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with tools to facilitate research. The key components are: (1) a molecular atlas of gene expression for the developing organs of the GenitoUrinary (GU) tract; (2) a high resolution molecular anatomy that highlights development of the GU system; (3) mouse strains to facilitate developmental and functional studies within the GU system; (4) tutorials describing GU organogenesis; and (5) rapid access to primary data via the GUDMAP database.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>