Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
AMCSD is an interface to a crystal structure database that includes every structure published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, as well as selected datasets from other journals. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association of Canada, and financed by the National Science Foundation. You may search by a mineral of your choice, or choose a mineral from a complete list to help aid your research.
D-PLACE contains cultural, linguistic, environmental and geographic information for over 1400 human ‘societies’. A ‘society’ in D-PLACE represents a group of people in a particular locality, who often share a language and cultural identity. All cultural descriptions are tagged with the date to which they refer and with the ethnographic sources that provided the descriptions. The majority of the cultural descriptions in D-PLACE are based on ethnographic work carried out in the 19th and early-20th centuries (pre-1950).
DBpedia is a crowd-sourced community effort to extract structured information from Wikipedia and make this information available on the Web. DBpedia allows you to ask sophisticated queries against Wikipedia, and to link the different data sets on the Web to Wikipedia data. We hope that this work will make it easier for the huge amount of information in Wikipedia to be used in some new interesting ways. Furthermore, it might inspire new mechanisms for navigating, linking, and improving the encyclopedia itself.
The information accumulated in the SPECTR-W3 ADB contains over 450,000 records and includes factual experimental and theoretical data on ionization potentials, energy levels, wavelengths, radiation transition probabilities, oscillator strengths, and (optionally) the parameters of analytical approximations of electron-collisional cross-sections and rates for atoms and ions. Those data were extracted from publications in physical journals, proceedings of the related conferences, special-purpose publications on atomic data, and provided directly by authors. The information is supplied with references to the original sources and comments, elucidating the details of experimental measurements or calculations, where necessary and available. To date, the SPECTR-W3 ADB is the largest factual database in the world containing the information on spectral properties of multicharged ions.
>>>!!!<<< 2019-12-03: The repository is no longer available >>>!!!<<< Please use https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html The atomic line data used in this database are taken from Bob Kurucz' CD-ROM 23 of spectroscopic line calculations. The database contains all lines of the file "gfall.dat" with the following items for each line: Wavelength; loggf; element code; lower level: energy, J, configuration; upper level: energy, J, configuration; gamma r; gamma s; gamma w; reference code. CD-ROM 23 has all the atomic line data with good wavelengths in one large file and in one file for each species. The big file is also divided into 10 nm and 100 nm sections for convenience. Also given are hyperfine line lists for neutral Sc, V, Mn, and Co that were produced by splitting all the energy levels for which laboratory data are available (only a small fraction).
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. IODP depends on facilities funded by three platform providers with financial contributions from five additional partner agencies. Together, these entities represent 26 nations whose scientists are selected to staff IODP research expeditions conducted throughout the world's oceans. IODP expeditions are developed from hypothesis-driven science proposals aligned with the program's science plan Illuminating Earth's Past, Present, and Future. The science plan identifies 14 challenge questions in the four areas of climate change, deep life, planetary dynamics, and geohazards. Until 2013 under the name: International Ocean Drilling Program.
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.
The Shuttle Radar Topography Mission, which flew aboard NASA's Space Shuttle Endeavour during an 11-day mission in 2000, made the first near-global topographical map of Earth, collecting data on nearly 80 percent of Earth's land surfaces. The instrument's design was essentially a modified version of the earlier Shuttle Imaging Radar instruments with a second antenna added to allow for topographic mapping using a technique similar to stereo photography.
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
Welcome to INTERMAGNET - the global network of observatories, monitoring the Earth's magnetic field. At this site you can find data and information from geomagnetic observatories around the world. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchanges and the production of geomagnetic products in close to real time.