Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
>>> the repository is offline <<< The Detection of Archaeological Residues using Remote-sensing Techniques (DART) project was initiated in 2010 in order to investigate the ability of various sensors to detect archaeological features in ‘difficult’ circumstances. Concluding in September 2013, DART had the overall aim of developing analytical methods for identifying and quantifying gradual changes and dynamics in sensor responses associated with surface and near-surface archaeological features under different environmental and land-management conditions.
As 3D and reality capture strategies for heritage documentation become more widespread and available, there has emerged a growing need to assist with guiding and facilitating accessibility to data, while maintaining scientific rigor, cultural and ethical sensitivity, discoverability, and archival standards. In response to these areas of need, The Open Heritage 3D Alliance (OHA) has developed as an advisory group governing the Open Heritage 3D initiative. This collaborative advisory group are among some of the earliest adopters of 3D heritage documentation technologies, and offer first-hand guidance for best practices in data management, sharing, and dissemination approaches for 3D cultural heritage projects. The founding members of the OHA, consist of experts and organizational leaders from CyArk, Historic Environment Scotland, and the University of South Florida Libraries, who together have significant repositories of legacy and on-going 3D research and documentation projects. These groups offer unique insight into not only the best practices for 3D data capture and sharing, but also have come together around concerns dealing with standards, formats, approach, ethics, and archive commitment. Together, the OHA has begun the journey to provide open access to cultural heritage 3D data, while maintaining integrity, security, and standards relating to discoverable dissemination. Together, the OHA will work to provide democratized access to primary heritage 3D data submitted from donors and organizations, and will help to facilitate an operation platform, archive, and organization of resources into the future.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected, modified and hosted a large amount of earth observation data for the majority of the UK, including imagery from ERS satellites, ENVISAT and ALOS, high-resolution Digital Elevation Models (DEMs) and Digital Terrain Models (DTMs) and aerial photography dating back to 1930. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. Aside from the thermal imagery data which stands alone, the data reside in four collections: optical, elevation, radar and feature.
High spatial resolution, contemporary data on human population distributions are a prerequisite for the accurate measurement of the impacts of population growth, for monitoring changes and for planning interventions. The WorldPop project aims to meet these needs through the provision of detailed and open access population distribution datasets built using transparent approaches. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty.
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.