Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
Using a combination of remote sensing data and ground observations as inputs, CHC scientists have developed rainfall estimation techniques and other resources to support drought monitoring and predict crop performance in parts of the world vulnerable to crop failure. Policymakers within governments and non-governmental organizations rely on CHC decision-support products to make critical resource allocation decisions. The CHC's scientific focus is "geospatial hydroclimatology," with an emphasis on the early detection and forecasting of hydroclimatic hazards related to food-security droughts and floods. Basic research seeks an improved understanding of the climatic processes that govern drought and flood hazards in FEWS NET countries (https://fews.net/). The CHC develops better techniques, algorithms, and modeling applications in order to use remote sensing and other geospatial data for hazards early warning.
Strong-motion data of engineering and scientific importance from the United States and other seismically active countries are served through the Center for Engineering Strong Motion Data(CESMD). The CESMD now automatically posts strong-motion data from an increasing number of seismic stations in California within a few minutes following an earthquake as an InternetQuick Report(IQR). As appropriate,IQRs are updated by more comprehensive Internet Data Reports that include reviewed versions of the data and maps showing, for example, the finite fault rupture along with the distribution of recording stations. Automated processing of strong-motion data will be extended to post the strong-motion records of the regional seismic networks of the Advanced National Seismic System (ANSS) outside California.
Country
The National Cryosphere Desert Data Center (hereinafter referred to as NCDC) is supported by the Institute of environment and Engineering in the cold and dry areas of the Chinese Academy of Sciences, in cooperation with Xinjiang Institute of ecology and geography of the Chinese Academy of Sciences, Chengdu Institute of mountain land disaster and environment of the Ministry of water resources of the Chinese Academy of Sciences, Qinghai Salt Lake Research Institute of the Chinese Academy of Sciences and Qinghai Gao of the Chinese Academy of Sciences The Institute of protobiology and other units were jointly established. The supporting units of glacier permafrost desert data center have formed a scientific research and support system of seven research laboratories and three research systems, highlighting the research characteristics of glacier, permafrost, desert, atmosphere, water and soil, ecology, environment, resources, engineering and sustainable development in the dry areas of cold regions.
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.