Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 650 result(s)
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.
Country
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
Country
BRENDA is the main collection of enzyme functional data available to the scientific community worldwide. The enzymes are classified according to the Enzyme Commission list of enzymes. It is available free of charge for via the internet (http://www.brenda-enzymes.org/) and as an in-house database for commercial users (requests to our distributor Biobase). The enzymes are classified according to the Enzyme Commission list of enzymes. Some 5000 "different" enzymes are covered. Frequently enzymes with very different properties are included under the same EC number. BRENDA includes biochemical and molecular information on classification, nomenclature, reaction, specificity, functional parameters, occurrence, enzyme structure, application, engineering, stability, disease, isolation, and preparation. The database also provides additional information on ligands, which function as natural or in vitro substrates/products, inhibitors, activating compounds, cofactors, bound metals, and other attributes.
Country
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The NCAA Student-Athlete Experiences Data Archive provides access to data about student athletes and will grow to include a handful of user-friendly data collections related to graduation rates; team-level Academic Progress Rates in Division I; and individual-level data on the experiences of current and former student-athletes from the NCAA's Growth, Opportunities, Aspirations and Learning of Students in college study (GOALS), and the Study of College Outcomes and Recent Experiences (SCORE). In the long run, the NCAA expects to follow this initial release with the publication of as much data as possible from its archives. The data is used by college presidents, athletic personnel, faculty, student-athlete groups, media members, and researchers in looking at issues related to intercollegiate athletics and higher education.
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
!!!!! This database doesn't exist anymore. 2017-09-05 !!!!!BeetleBase is a comprehensive sequence database and important community resource for Tribolium genetics, genomics and developmental biology. It provides genetic data on the Tribolium Castaneum, Red Flour Beetle, as gene maps, official gene set, reference sequences, predicted models, and whole-genome tiling array representing developmental stages.
ICD serves as the international standard for diagnostic classification for all general epidemiological, many health management purposes and clinical use. The ICD's resources include the analysis of different population groups' general health situations, monitoring of the incidence and prevalence of diseases in relation to the characteristics of the individuals affected, reimbursement, resource allocation, quality, and guidelines. The records provide the basis for the compilation of national mortality and morbidity statistics, and enable the storage and retrieval of diagnostic information for clinical epidemiological and quality purposes.
The DOE Data Explorer (DDE) is an information tool to help you locate DOE's collections of data and non-text information and, at the same time, retrieve individual datasets within some of those collections. It includes collection citations prepared by the Office of Scientific and Technical Information, as well as citations for individual datasets submitted from DOE Data Centers and other organizations.
Country
<<<<!! The database is archived: https://web.archive.org/web/20071012173502/http://moltable.ncl.res.in/index.htm !!>>>> MolTable: An Open Access (Molecule Table) Portal for "Advanced Chemoinformatics Research, Training and Services"
The ISSAID website gathers resources related to the systemic autoinflammatory diseases in order to facilitate contacts between interested physicians and researchers. The website provides support to share and rapidly disseminate information, thoughts, feelings and experiences to improve the quality of life of patients and families affected by systemic autoinflammatory diseases, and promote advances in the search for causes and cures.
caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanoLab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical and in vitro assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.
Country
Indian Genetic Disease Database (IGDD) is an initiative of CSIR Indian Institute of Chemical Biology. It is supported by Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT) of India. The Indian people represent one-sixth of the world population and consists of a ethnically, geographically, and genetically diverse population. In some communities the ratio of genetic disorder is relatively high due to consanguineous marriage practiced in the community. This database has been created to keep track of mutations in the causal genes for genetic diseases common in India and help the physicians, geneticists, and other professionals retrieve and use the information for the benefit of the public. The database includes scientific information about these genetic diseases and disabilities, but also statistical information about these diseases in today's society. Data is categorized by body part affected and then by title of the disease.
This resource allows users to search for and compare influenza virus genomes and gene sequences taken from GenBank. It also provides a virus sequence annotation tool and links to other influenza resources: NIAID project, JCVI Flu, Influenza research database, CDC Flu, Vaccine Selection and WHO Flu.
The GHDx is our user-friendly and searchable data catalog for global health, demographic, and other health-related datasets. It provides detailed information about datasets ranging from censuses and surveys to health records and vital statistics, globally. It also serves as a platform for data owners to share their data with the public. The GDB Compare visualization, which allows the user to see rate of change in disease incidence, globally or by country, by age or across all ages, is especially powerful as a tool. Be sure to try adding a bottom chart, like the map, to augment the treemap that loads by default in the top chart.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan and the C.U. Ariëns Kappers brain collection from Amsterdam Netherlands.Introducing online atlases of the brains of humans, sheep, dolphins, and other animals. A world resource for illustrations of whole brains and stained sections from a great variety of mammals
ModelDB is a curated database of published models in the broad domain of computational neuroscience. It addresses the need for access to such models in order to evaluate their validity and extend their use. It can handle computational models expressed in any textual form, including procedural or declarative languages (e.g. C++, XML dialects) and source code written for any simulation environment. The model source code doesn't even have to reside inside ModelDB; it just has to be available from some publicly accessible online repository or WWW site.
Country
>>>!!!<<< Offline, actually no valid URL 2020-09-30 >>>!!!<<< A human interactome map. The sequencing of the human genome has provided a surprisingly small number of genes, indicating that the complex organization of life is not reflected in the gene number but, rather, in the gene products – that is, in the proteins. These macromolecules regulate the vast majority of cellular processes by their ability to communicate with each other and to assemble into larger functional units. Therefore, the systematic analysis of protein-protein interactions is fundamental for the understanding of protein function, cellular processes and, ultimately, the complexity of life. Moreover, interactome maps are particularly needed to link new proteins to disease pathways and the identification of novel drug targets.