Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
The Yeast Resource Center provides access to data about mass spectrometry, yeast two-hybrid arrays, deconvolution florescence microscopy, protein structure prediction and computational biology. These services are provided to further the goal of a complete understanding of the chemical interactions required for the maintenance and faithful reproduction of a living cell. The observation that the fundamental biological processes of yeast are conserved among all eukaryotes ensures that this knowledge will shape and advance our understanding of living systems.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
GenBankĀ® is a comprehensive database that contains publicly available nucleotide sequences for almost 260 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.
DataON is Korea's National Research Data Platform. It provides integrated search of metadata for KISTI's research data and domestic and international research data and links to raw data. DataON allows users (researchers, policy makers, etc.) to perform the following tasks: Easily search for various types of research data in all scientific fields. By registering research results, research data can be posted and cited. Build a community among researchers and enable collaborative research. It provides a data analysis environment that allows one-stop analysis of discovered research data.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
>>>!!!<<< Sorry.we are no longer in operation >>>!!!<<< The Beta Cell Biology Consortium (BCBC) was a team science initiative that was established by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). It was initially funded in 2001 (RFA DK-01-014), and competitively continued both in 2005 (RFAs DK-01-17, DK-01-18) and in 2009 (RFA DK-09-011). Funding for the BCBC came to an end on August 1, 2015, and with it so did our ability to maintain active websites.!!! One of the many goals of the BCBC was to develop and maintain databases of useful research resources. A total of 813 different scientific resources were generated and submitted by BCBC investigators over the 14 years it existed. Information pertaining to 495 selected resources, judged to be the most scientifically-useful, has been converted into a static catalog, as shown below. In addition, the metadata for these 495 resources have been transferred to dkNET in the form of RDF descriptors, and all genomics data have been deposited to either ArrayExpress or GEO. Please direct questions or comments to the NIDDK Division of Diabetes, Endocrinology & Metabolic Diseases (DEM).
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.