• * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
GermOnline 4.0 is a cross-species database gateway focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. The portal provides access to the Saccharomyces Genomics Viewer (SGV) which facilitates online interpretation of complex data from experiments with high-density oligonucleotide tiling microarrays that cover the entire yeast genome.
The objective of the Database of Genomic Variants is to provide a comprehensive summary of structural variation in the human genome. We define structural variation as genomic alterations that involve segments of DNA that are larger than >1kb. Now we also annotate InDels in 100bp-1kb range. The content of the database is only representing structural variation identified in healthy control samples. The Database of Genomic Variants provides a useful catalog of control data for studies aiming to correlate genomic variation with phenotypic data. The database is continuously updated with new data from peer reviewed research studies. We always welcome suggestions and comments regarding the database from the research community.