Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 17 result(s)
The Alternative Fuels Data Center (AFDC) is a comprehensive clearinghouse of information about advanced transportation technologies. The AFDC offers transportation decision makers unbiased information, data, and tools related to the deployment of alternative fuels and advanced vehicles. The AFDC launched in 1991 in response to the Alternative Motor Fuels Act of 1988 and the Clean Air Act Amendments of 1990. It originally served as a repository for alternative fuel performance data. The AFDC has since evolved to offer a broad array of information resources that support efforts to reduce petroleum use in transportation. The AFDC serves Clean Cities stakeholders, fleets regulated by the Energy Policy Act, businesses, policymakers, government agencies, and the general public.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Country
The Canadian Astronomy Data Centre (CADC) was established in 1986 by the National Research Council of Canada (NRC), through a grant provided by the Canadian Space Agency (CSA). Over the past 30 years the CADC has evolved from an archiving centre---hosting data from Hubble Space Telescope, Canada-France-Hawaii Telescope, the Gemini observatories, and the James Clerk Maxwell Telescope---into a Science Platform for data-intensive astronomy. The CADC, in partnership with Shared Services Canada, Compute Canada, CANARIE and the university community (funded through the Canadian Foundation for Innovation), offers cloud computing, user-managed storage, group management, and data publication services, in addition to its ongoing mission to provide permanent storage for major data collections. Located at NRC Herzberg Astronomy and Astrophysics Research Centre in Victoria, BC, the CADC staff consists of professional astronomers, software developers, and operations staff who work with the community to develop and deliver leading-edge services to advance Canadian research. The CADC plays a leading role in international efforts to improve the scientific/technical landscape that supports data intensive science. This includes leadership roles in the International Virtual Observatory Alliance and participation in organizations like the Research Data Alliance, CODATA, and the World Data Systems. CADC also contributes significantly to future Canadian projects like the Square Kilometre Array and TMT. In 2019, the Canadian Astronomy Data Centre (CADC) delivered over 2 Petabytes of data (over 200 million individual files) to thousands of astronomers in Canada and in over 80 other countries. The cloud processing system completed over 6 million jobs (over 1100 core years) in 2019.
NCEP delivers national and global weather, water, climate and space weather guidance, forecasts, warnings and analyses to its Partners and External User Communities. The National Centers for Environmental Prediction (NCEP), an arm of the NOAA's National Weather Service (NWS), is comprised of nine distinct Centers, and the Office of the Director, which provide a wide variety of national and international weather guidance products to National Weather Service field offices, government agencies, emergency managers, private sector meteorologists, and meteorological organizations and societies throughout the world. NCEP is a critical national resource in national and global weather prediction. NCEP is the starting point for nearly all weather forecasts in the United States. The Centers are: Aviation Weather Center (AWC), Climate Prediction Center (CPC), Environmental Modeling Center (EMC), NCEP Central Operations (NCO), National Hurricane Center (NHC), Ocean Prediction Center (OPC), Storm Prediction Center (SPC), Space Weather Prediction Center (SWPC), Weather Prediction Center (WPC)
This site is dedicated to making high value health data more accessible to entrepreneurs, researchers, and policy makers in the hopes of better health outcomes for all. In a recent article, Todd Park, United States Chief Technology Officer, captured the essence of what the Health Data Initiative is all about and why our efforts here are so important.
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
The Pennsieve platform is a cloud-based scientific data management platform focused on integrating complex datasets, fostering collaboration and publishing scientific data according to all FAIR principles of data sharing. The platform is developed to enable individual labs, consortiums, or inter-institutional projects to manage, share and curate data in a secure cloud-based environment and to integrate complex metadata associated with scientific files into a high-quality interconnected data ecosystem. The platform is used as the backend for a number of public repositories including the NIH SPARC Portal and Pennsieve Discover repositories. It supports flexible metadata schemas and a large number of scientific file-formats and modalities.
Country
This study assessed differences in avian biodiversity across different forest age-classes, including mature stands (> 100 years), in a managed, mixed-species eucalypt forest located in Gippsland, south-eastern Australia. Avian surveys and detailed habitat measurements were initially carried out in 50 two hectare stands ranging in age from 100 years. Extensive wildfire which occurred during the study reduced the number of sites to 28 (seven in each of four age classes) upon which analyses and inferences were made. Mature vegetation (> 100 years) had the greatest richness, abundance and biomass of birds. Key ecological resources, such as tree-hollows for nesting, generally occurred mostly in stands > 60 years. There were quantum increases in all measures of avian biodiversity in mature stands (> 100 years). The visualisation of the survey data is part of an interoperable web-GIS maintained by the Centre for eResearch and Digital Innovation (CeRDI) at Federation University Australia (FedUni).
arrayMap is a repository of cancer genome profiling data. Original) from primary repositories (e.g. NCBI GEO, EBI ArrayExpress, TCGA) is re-processed and annotated for metadata. Unique visualization of the processed data allows critical evaluation of data quality and genome information. Structured metadata provides easy access to summary statistics, with a focus on copy number aberrations in cancer entities.
The Progenetix database provides an overview of copy number abnormalities in human cancer from currently 32548 array and chromosomal Comparative Genomic Hybridization (CGH) experiments, as well as Whole Genome or Whole Exome Sequencing (WGS, WES) studies. The cancer profile data in Progenetix was curated from 1031 articles and represents 366 different cancer types, according to the International classification of Diseases in Oncology (ICD-O).
The Met Office is the UK's National Weather Service. We have a long history of weather forecasting and have been working in the area of climate change for more than two decades. As a world leader in providing weather and climate services, we employ more than 1,800 at 60 locations throughout the world. We are recognised as one of the world's most accurate forecasters, using more than 10 million weather observations a day, an advanced atmospheric model and a high performance supercomputer to create 3,000 tailored forecasts and briefings a day. These are delivered to a huge range of customers from the Government, to businesses, the general public, armed forces, and other organisations.
The WOUDC processes, archives and publishes world ozone and UV data reported by over 400 stations comprising over 100 international agencies and universities. The World Ozone and Ultraviolet Radiation Data Centre (WOUDC) has the two component parts: the World Ozone Data Centre (WODC) and the World Ultraviolet Radiation Data Centre (WUDC). These data are available on-line with updates occuring every week and in addition to the on-line archive, data are published annually on CD-ROM, now DVD.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
GNPS is a web-based mass spectrometry ecosystem that aims to be an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. GNPS aids in identification and discovery throughout the entire life cycle of data; from initial data acquisition/analysis to post publication.