• * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 2 result(s)
Country
The WURM project is a database of computed Raman and infrared spectra and other physical properties for minerals. The calculations are performed within the framework of the density-functional theory and the density-functional perturbation theory. The database is freely available for teaching and research purposes and is presented in a web-based format, hosted on the https://www.wurm.info/ web site. It provides the crystal structure, the parameters of the calculations, the dielectric properties, the Raman spectra with both peak positions and intensities and the infrared spectra with peak positions for minerals. It shows the atomic displacement patterns for all the zone-center vibrational modes and the associated Raman tensors. The web presentation is user friendly and highly oriented toward the end user, with a strong educational component in mind. A set of visualization tools ensures the observation of the crystal structure, the vibrational pattern, and the different spectra. Further developments include elastic and optical properties of minerals.
Country
RES³T is a digitized version of a thermodynamic sorption database as required for the parametrization of Surface Complexation Models (SCM). It is mineral-specific and can therefore also be used for additive models of more complex solid phases such as rocks or soils. A user interface helps to access selected mineral and sorption data, to convert parameter units, to extract internally consistent data sets for sorption modeling. Data records comprise of mineral properties, specific surface area values, characteristics of surface binding sites and their protolysis, sorption ligand information, and surface complexation reactions