Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 71 result(s)
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
The World Ocean Atlas (WOA) contains objectively analyzed climatological fields of in situ temperature, salinity, oxygen, and other measured variables at standard depth levels for various compositing periods for the world ocean. Regional climatologies were created from the Atlas, providing a set of high resolution mean fields for temperature and salinity. A new version of the WOA is released in conjunction with each major update to the WOD, the largest collection of publicly available, uniformly formatted, quality controlled subsurface ocean profile data in the world.
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
TES is the first satellite instrument to provide simultaneous concentrations of carbon monoxide, ozone, water vapor and methane throughout Earth’s lower atmosphere. This lower atmosphere (the troposphere) is situated between the surface and the height at which aircraft fly, and is an important part of the atmosphere that we often impact with our activities.
<<<!!!<<< The repository is no longer available. >>>!!!>>> The website is archived: https://web.archive.org/web/20161118010932/http:/ourocean.jpl.nasa.gov/ You can follow links to navigate further into archived content from that site.
OceanSITES is a worldwide system of long-term, deepwater reference stations measuring dozens of variables and monitoring the full depth of the ocean from air-sea interactions down to 5,000 meters. Since 1999, the international OceanSITES science team has shared both data and costs in order to capitalize on the enormous potential of these moorings. The growing network now consists of about 30 surface and 30 subsurface arrays. Satellite telemetry enables near real-time access to OceanSITES data by scientists and the public. OceanSITES moorings are an integral part of the Global Ocean Observing System. They complement satellite imagery and ARGO float data by adding the dimensions of time and depth.
The Centre for Environmental Data Analysis (CEDA) serves the environmental science community through managing data centres, data analysis environments, and participation in a host of relevant research projects. We aim to support environmental science, further environmental data archival practices, and develop and deploy new technologies to enhance access to data. Additionally we provide services to aid large scale data analysis. The CEDA Archive operates the atmospheric and earth observation data centre functions on behalf of NERC for the UK atmospheric science and earth observation communities. It covers climate, composition, observations and NWP data as well as various earth observation datasets, including airborne and satellite data and imagery. Prior to November 2016 these functions were operted by CEDA under the titles of the British Atmospheric Data Centre (BADC) and the NERC Earth Observation Data Centre (NEODC). CEDA also operates the UK Solar System Data Centre (UKSSDC), which curates and provides access to archives of data from the upper atmosphere, ionosphere and Earth's solar environment.
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
Country
Satellite observations of sea ice concentration in the Arctic and the Antarctic are the backbone of www.meereisportal.de since its launch in April 2013. Since then, daily maps and data sets are published on the information and data portal. Time series and trends are updated daily, representing the status of the sea ice cover on hemispheres. meereisportal.de/seaiceportal.de was laid out as an open portal and shall serve scientific groups performing research on sea ice as a platform for communicating the results of their research.
Using a combination of remote sensing data and ground observations as inputs, CHC scientists have developed rainfall estimation techniques and other resources to support drought monitoring and predict crop performance in parts of the world vulnerable to crop failure. Policymakers within governments and non-governmental organizations rely on CHC decision-support products to make critical resource allocation decisions. The CHC's scientific focus is "geospatial hydroclimatology," with an emphasis on the early detection and forecasting of hydroclimatic hazards related to food-security droughts and floods. Basic research seeks an improved understanding of the climatic processes that govern drought and flood hazards in FEWS NET countries (https://fews.net/). The CHC develops better techniques, algorithms, and modeling applications in order to use remote sensing and other geospatial data for hazards early warning.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
To understand the global surface energy budget is to understand climate. Because it is impractical to cover the earth with monitoring stations, the answer to global coverage lies in reliable satellite-based estimates. Efforts are underway at NASA and universities to develop algorithms to do this, but such projects are in their infancy. In concert with these ambitious efforts, accurate and precise ground-based measurements in differing climatic regions are essential to refine and verify the satellite-based estimates, as well as to support specialized research. To fill this niche, the Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs.
Country
>>>!!!<<< duplicate >>>!!!<<< see https://www.re3data.org/repository/r3d100010914 At 2016-05-29 sees the official merger of the IMOS eMarine Information Infrastructure (eMII) Facility and the Australian Ocean Data Network (AODN) into a single entity. The marine information Facility of IMOS is now the AODN. Enabling open access to marine data is core business for IMOS. The IMOS data will continue to be discoverable alongside a wider collection of Australian marine and climate data via the new-look AODN Portal. Visit the AODN Portal at https://portal.aodn.org.au/. - All IMOS data is open access and can be discovered, accessed and downloaded via the Australian Ocean Data Network (AODN) Portal.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.
The EPN (or EUREF Permanent Network) is a voluntary organization of several European agencies and universities that pool resources and permanent GNSS station data to generate precise GNSS products. The EPN has been created under the umbrella of the International Association Geodesy and more precisely by its sub-commission EUREF. The European Terrestrial Reference System 89 (ETRS89) is used as the standard precise GPS coordinate system throughout Europe. Supported by EuroGeographics and endorsed by the EU, this reference system forms the backbone for all geographic and geodynamic projects on the European territory both on a national as on an international level.
Remote Sensing Systems is a world leader in processing and analyzing microwave data from satellite microwave sensors. We specialize in algorithm development, instrument calibration, ocean product development, and product validation. We have worked with more than 30 satellite microwave radiometer, sounder, and scatterometer instruments over the past 40 years. Currently, we operationally produce satellite retrievals for SSMIS, AMSR2, WindSat, and ASCAT. The geophysical retrievals obtained from these sensors are made available in near-real-time (NRT) to the global scientific community and general public via FTP and this web site.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The NOAA/ESRL Physical Sciences Division (PSD) conducts weather and climate research to observe and understand Earth's physical environment, and to improve weather and climate predictions on global-to-local scales. PSD archives a wide range of data ranging from gridded climate datasets extending hundreds of years to real-time wind profiler data at a single location. The data or products derived from this data, organized by type, are available to scientists and the general public .
!!! <<< the repository is offline, please use: https://www.re3data.org/repository/r3d100011650 >>> !!! The USGODAE Project consists of United States academic, government and military researchers working to improve assimilative ocean modeling as part of the International GODAE Project. GODAE hopes to develop a global system of observations, communications, modeling and assimilation, that will deliver regular, comprehensive information on the state of the oceans, in a way that will promote and engender wide utility and availability of this resource for maximum benefit to the community. The USGODAE Argo GDAC is currently operational, serving daily data from the following national DACs: Australia (CSIRO), Canada (MEDS), China (2: CSIO and NMDIS), France (Coriolis), India (INCOIS), Japan (JMA), Korea (2: KMA and Kordi), UK (BODC), and US (AOML).
The NCEP/NCAR Reanalysis Project is a joint project between the National Centers for Environmental Prediction (NCEP, formerly "NMC") and the National Center for Atmospheric Research (NCAR). The goal of this joint effort is to produce new atmospheric analyses using historical data (1948 onwards) and as well to produce analyses of the current atmospheric state (Climate Data Assimilation System, CDAS).
NCEP delivers national and global weather, water, climate and space weather guidance, forecasts, warnings and analyses to its Partners and External User Communities. The National Centers for Environmental Prediction (NCEP), an arm of the NOAA's National Weather Service (NWS), is comprised of nine distinct Centers, and the Office of the Director, which provide a wide variety of national and international weather guidance products to National Weather Service field offices, government agencies, emergency managers, private sector meteorologists, and meteorological organizations and societies throughout the world. NCEP is a critical national resource in national and global weather prediction. NCEP is the starting point for nearly all weather forecasts in the United States. The Centers are: Aviation Weather Center (AWC), Climate Prediction Center (CPC), Environmental Modeling Center (EMC), NCEP Central Operations (NCO), National Hurricane Center (NHC), Ocean Prediction Center (OPC), Storm Prediction Center (SPC), Space Weather Prediction Center (SWPC), Weather Prediction Center (WPC)