Filter
Reset all

Subjects

Content Types

Countries

Data access

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 20 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
Country
The Atomic and Molecular Data Unit operates within the Nuclear Data Section of the International Atomic Energy Agency, Vienna, Austria.The primary objective of the Atomic and Molecular Data Unit is to establish and maintain internationally recommended numerical databases on atomic and molecular collision and radiative processes, atomic and molecular structure characteristics, particle-solid surface interaction processes and physico-chemical and thermo-mechanical material properties for use in fusion energy research and other plasma science and technology applications.
The ADAS Project is a self-funding (i.e. funded by participants) project consisting of most major fusion laboratories along with other astrophysical and university groups. As an implementation, it is an interconnected set of computer codes and data collections for modelling the radiating properties of ions and atoms in plasmas. It can address plasmas ranging from the interstellar medium through the solar atmosphere and laboratory thermonuclear fusion devices to technological plasmas. ADAS assists in the analysis and interpretation of spectral emission and supports detailed plasma models.