Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
Herschel has been designed to observe the `cool universe'; it is observing the structure formation in the early universe, resolving the far infrared cosmic background, revealing cosmologically evolving AGN/starburst symbiosis and galaxy evolution at the epochs when most stars in the universe were formed, unveiling the physics and chemistry of the interstellar medium and its molecular clouds, the wombs of the stars, and unravelling the mechanisms governing the formation of and evolution of stars and their planetary systems, including our own solar system, putting it into context. In short, Herschel is opening a new window to study how the universe has evolved to become the universe we see today, and how our star the sun, our planet the earth, and we ourselves fit in.
Country
The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark and Bolshoi project, and the CLUES project. The CosmoSim webpage provides access to several cosmological simulations, with a separate database for each simulation. Simulations overview: https://www.cosmosim.org/cms/simulations/simulations-overview/ . CosmoSim is a contribution to the German Astrophysical Virtual Observatory.