Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 85 result(s)
The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU) and is greatly expanded by networks (e.g., RIMA, AeroSpan, AEROCAN, and CARSNET) and collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, microphysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution.
AHEAD, the European Archive of Historical Earthquake Data 1000-1899, is a distributed archive aiming at preserving, inventorying and making available, to investigators and other users, data sources on the earthquake history of Europe, such as papers, reports, Macroseismic Data Points (MDPs), parametric catalogues, and so on.
The SAR Data Center has a large data archive of Synthetic Aperture Radar (SAR) from a variety of sensors available at no cost. Much of the SAR data in the ASF SDC archive is limited in distribution to the scientific research community and U.S. Government Agencies. In accordance with the Memoranda of Understanding (MOU) between the relevant flight agencies (CSA, ESA, JAXA) and the U.S. State Department, the ASF SDC does not distribute SAR data for commercial use. The research community can access the data (ERS-1, ERS-2, JERS-1, RADARSAT-1, and ALOS PALSAR) via a brief proposal process.
The Australian National University undertake work to collect and publish metadata about research data held by ANU, and in the case of four discipline areas, Earth Sciences, Astronomy, Phenomics and Digital Humanities to develop pipelines and tools to enable the publication of research data using a common and repeatable approach. Aims and outcomes: To identify and describe research data held at ANU, to develop a consistent approach to the publication of metadata on the University's data holdings: Identification and curation of significant orphan data sets that might otherwise be lost or inadvertently destroyed, to develop a culture of data data sharing and data re-use.
Apollo (previously DSpace@Cambridge) is the University of Cambridge’s Institutional Repository (IR), preserving and providing access to content created by members of the University. The repository stores a range of content and provides different levels of access, but its primary focus is on providing open access to the University’s research publications.
!!! We will terminate ASTER Products Distribution Service in March 2016 although we have been providing ASTER Products since November 20, 2000. !!! ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) is the high efficiency optical imager which covers a wide spectral region from the visible to the thermal infra-red by 14 spectral bands. ASTER acquires data which can be used in various fields in earth science. ASTER was launched from Vandenberg Air Force Base in California, USA in 1999 aboard the Terra, which is the first satellite of the EOS Project. The purpose of ASTER project is to make contributions to extend the understanding of local and regional phenomena on the Earth surface and its atmosphere. The followings are ASTER related information, which includes ASTER instrument, ASTER Ground Data System, ASTER Science Activities, ASTER Data Distribution and so on. ASTER Search provides services to search and order ASTER data products on the website.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
The ASTER Volcano Archive (AVA) is the worlds largest specialty archive of volcano data. For 1,549 recently active volcanos listed by the Smithsonian Global Volcanism Program, the AVA has collected the entirety of high-resolution multispectral ASTER data and made it available to the public. Also included are digital elevation maps, NOAA ash advisories, alteration zone imagery, and thermal anomaly reports. LANDSAT7 data are also being processed.
ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence.
Country
The Australian Antarctic Data Centre (AADC) provides data collection and data management services in Australia's Antarctic Science Program. The AADC manages science data from Australia's Antarctic research, maps Australia's areas of interest in the Antarctic region, manages Australia's Antarctic state of the environment reporting, and provides advice and education and a range of other products.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Country
bonndata is the institutional, FAIR-aligned and curated, cross-disciplinary research data repository for the publication of research data for all researchers at the University of Bonn. The repository is fully embedded into the University IT and Data Center and curated by the Research Data Service Center (https://www.forschungsdaten.uni-bonn.de/en). The software that bonndata is based on is the open source software Dataverse (https://dataverse.org)
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
The CRC1211DB is the project-database of the Collaborative Research Centre 1211 "Earth -Evolution at the dry limit" (CRC1211,https://sfb1211.uni-koeln.de/) funded by the German Research Foundation (DFG, German Research Foundation – Projektnummer 268236062). The project-database is a new implementation of the TR32DB and online since 2016. It handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, biology, geography, geology, meteorology and remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership based at the NASA Goddard Space Flight Center in Greenbelt, Maryland and a component of the National Space Weather Program. The CCMC provides, to the international research community, access to modern space science simulations. In addition, the CCMC supports the transition to space weather operations of modern space research models.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
Including data and software from CrystalEye is this a open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. At present, this is the most comprehensive open resource for small molecule structures, freely available to all scientists in Lithuania and worldwide. Including data and software from CrystalEye, developed by Nick Day at the department of Chemistry, the University of Cambridge under supervision of Peter Murray-Rust.
Country
More than 25 years ago FIZ Karlsruhe started depositing crystal structure data linked to publications in German journals. At that time it was irrelevant whether the deposited structures were organic or inorganic. Today FIZ Karlsruhe is responsible for storing the structure data of inorganic compounds. Organic structure data are stored by the Cambridge Crystallographic Data Center. Nowadays many publishers inform their authors that in parallel to a publication in a scientific journal, crystal structure data should also be stored in the Crystal Structure Depot at FIZ Karlsruhe. A CSD number will be assigned to the data for later reference in the publication. The data can then be ordered from the Crystal Structure Depot at FIZ Karlsruhe.
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.