Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
<<<!!!<<< As of 2023, support to maintain the www.modencode.org and intermine.modencode.org sites have been retired following the end of funding. To access data from the modENCODE project, or for questions regarding the data they make available, please visit these databases: Fly data: FlyBase: ModENCODE data at FlyBase: https://wiki.flybase.org/wiki/FlyBase:ModENCODE_data_at_FlyBase FlyBase: https://www.re3data.org/repository/r3d100010591 Worm data: WormBase https://www.re3data.org/repository/r3d100010424 Data, including modENCODE and modERN project data, is also available at the ENCODE Portal: https://www.re3data.org/repository/r3d100013051 (search metadata and view datasets for Drosophila and Caenorhabditis https://www.encodeproject.org/matrix/?type=Experiment&control_type!=*&status=released&replicates.library.biosample.donor.organism.scientific_name=Drosophila+melanogaster&replicates.library.biosample.donor.organism.scientific_name=Caenorhabditis+elegans&replicates.library.biosample.donor.organism.scientific_name=Drosophila+pseudoobscura&replicates.library.biosample.donor.organism.scientific_name=Drosophila+mojavensis). >>>!!!>>>
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications