Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 22 result(s)
TES is the first satellite instrument to provide simultaneous concentrations of carbon monoxide, ozone, water vapor and methane throughout Earth’s lower atmosphere. This lower atmosphere (the troposphere) is situated between the surface and the height at which aircraft fly, and is an important part of the atmosphere that we often impact with our activities.
The World Ocean Atlas (WOA) contains objectively analyzed climatological fields of in situ temperature, salinity, oxygen, and other measured variables at standard depth levels for various compositing periods for the world ocean. Regional climatologies were created from the Atlas, providing a set of high resolution mean fields for temperature and salinity. A new version of the WOA is released in conjunction with each major update to the WOD, the largest collection of publicly available, uniformly formatted, quality controlled subsurface ocean profile data in the world.
AIRS moves climate research and weather prediction into the 21st century. AIRS is one of six instruments on board the Aqua satellite, part of the NASA Earth Observing System. AIRS along with its partner microwave instrument the Advanced Microwave Sounding Unit AMSU-A, represents the most advanced atmospheric sounding system ever deployed in space. Together these instruments observe the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
The International Satellite Cloud Climatology Project (ISCCP) is a database of intended for researchers to share information about cloud radiative properties. The data sets focus on the effects of clouds on the climate, the radiation budget, and the long-term hydrologic cycle. Within the data sets the data entries are broken down into entries of specific characteristics based on temporal resolution, spatial resolution, or temporal coverage.
Surface air temperature change is a primary measure of global climate change. The GISTEMP project started in the late 1970s to provide an estimate of the changing global surface air temperature which could be compared with the estimates obtained from climate models simulating the effect of changes in atmospheric carbon dioxide, volcanic aerosols, and solar irradiance. The continuing analysis updates global temperature change from the late 1800s to the present.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
Funded by the National Science Foundation (NSF) and proudly operated by Battelle, the National Ecological Observatory Network (NEON) program provides open, continental-scale data across the United States that characterize and quantify complex, rapidly changing ecological processes. The Observatory’s comprehensive design supports greater understanding of ecological change and enables forecasting of future ecological conditions. NEON collects and processes data from field sites located across the continental U.S., Puerto Rico, and Hawaii over a 30-year timeframe. NEON provides free and open data that characterize plants, animals, soil, nutrients, freshwater, and the atmosphere. These data may be combined with external datasets or data collected by individual researchers to support the study of continental-scale ecological change.
The National Park Service Gaseous Pollutant Monitoring Program Database provides gaseous air pollutant and meteorological data as *.csv files. Queries allow filtering by location of ozone, wind speed, wind direction, ambient temperature, relative humidity, solar radiation, wetness data.
Using a combination of remote sensing data and ground observations as inputs, CHC scientists have developed rainfall estimation techniques and other resources to support drought monitoring and predict crop performance in parts of the world vulnerable to crop failure. Policymakers within governments and non-governmental organizations rely on CHC decision-support products to make critical resource allocation decisions. The CHC's scientific focus is "geospatial hydroclimatology," with an emphasis on the early detection and forecasting of hydroclimatic hazards related to food-security droughts and floods. Basic research seeks an improved understanding of the climatic processes that govern drought and flood hazards in FEWS NET countries (https://fews.net/). The CHC develops better techniques, algorithms, and modeling applications in order to use remote sensing and other geospatial data for hazards early warning.
The Alaska Climate Research Center archives and provides digital climate records, climate statistics, and monthly weather summaries on Alaska and the polar regions. The Alaska Climate Research Center is part of the Geophysical Institute at the University of Alaska Fairbanks.
The CAS Data Catalog contains a variety of atmospheric and oceanic energy budget calculations derived from satellites and Reanalysis products. The CAS Data Catalog has been archived in favor of the Climate Data Guide https://www.re3data.org/repository/r3d100012500. Please visit that website for your climate data needs and to view datasets from the CAS Data Catalog refer to the Climate Analysis Section (CAS) Data Catalog tag (https://climatedataguide.ucar.edu/collections/climate-analysis-section-cas-data-catalog) on the Climate Data Guide website.
The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.
IRMA (Integrated Resource Management Applications) provides natural and cultural resources data from the National Park Service. Most entries are in the form of peer-reviewed publications, but some are raw data sets based on in-park research projects.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.