Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 7 result(s)
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
OrtholugeDB contains Ortholuge-based orthology predictions for completely sequenced bacterial and archaeal genomes. It is also a resource for reciprocal best BLAST-based ortholog predictions, in-paralog predictions (recently duplicated genes) and ortholog groups in Bacteria and Archaea. The Ortholuge method improves the specificity of high-throughput orthology prediction.
Content type(s)
CTD is a robust, publicly available database that aims to advance understanding about how environmental exposures affect human health. It provides manually curated information about chemical–gene/protein interactions, chemical–disease and gene–disease relationships. These data are integrated with functional and pathway data to aid in development of hypotheses about the mechanisms underlying environmentally influenced diseases. We also have additional ongoing projects involving manual curation of exposome data and chemical–phenotype relationships to help identify pre–disease biomarkers resulting from environmental exposures. The initial release of CTD was on November 12, 2004. We’re grateful to our strong community support and encourage you to give us feedback so we can continue to evolve with your research needs.
<<<!!!<<< The ArkDB is now CLOSED With apologies to anyone who still relies on the ArkDB data system or map-drawing tools, we've had to take the difficult decision to shut down the ArkDB system. We've not been funded to maintain it for many years now and have kept it in the air as best we could with the time that we had available but recent changes in personnel and continuing updates to the underpinning libraries mean that the effort required to keep it going outweighs the perceived benefits. If you feel that this is the wrong decision, please contact us to let us know and we'll see what we can do together You can always contact us on our Roslin Bioinformatics email address (roslin.bioinformatics@roslin.ed.ac.uk) The Roslin Bioinformatics Team 21st November 2018 >>>!!!>>>