Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 25 result(s)
The RRUFF Project is creating a complete set of high quality spectral data from well characterized minerals and is developing the technology to share this information with the world. The collected data provides a standard for mineralogists, geoscientists, gemologists and the general public for the identification of minerals both on earth and for planetary exploration.Electron microprobe analysis is used to determine the chemistry of each mineral.
Physical Reference Data compiles physical data and biblographic sources: Physical constants, atomic spectroscopy data, molecular spectroscopic data, X-Ray and Gamma-Ray data, nuclear physics data etc.
>>>!!!<<< The repository is no longer available. >>>!!!<<< Here you will find a collection of atomic microstructures that have been built by the atomic modeling community. Feel free to download any of these and use them in your own scientific explorations.The focus of this cyberinfrastructure is to advance the field of atomic-scale modeling of materials by acting as a forum for disseminating new atomistic scale methodologies, educating non-experts and the next generation of computational materials scientists, and serving as a bridge between the atomistic and complementary (electronic structure, mesoscale) modeling communities.
nanoHUB.org is the premier place for computational nanotechnology research, education, and collaboration. Our site hosts a rapidly growing collection of Simulation Programs for nanoscale phenomena that run in the cloud and are accessible through a web browser. In addition to simulation devices, nanoHUB provides Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. These resources help users learn about our simulation programs and about nanotechnology in general. Our site offers researchers a venue to explore, collaborate, and publish content, as well. Much of these collaborative efforts occur via Workspaces and User groups.
Pubchem contains 3 databases. 1. PubChem BioAssay: The PubChem BioAssay Database contains bioactivity screens of chemical substances described in PubChem Substance. It provides searchable descriptions of each bioassay, including descriptions of the conditions and readouts specific to that screening procedure. 2. PubChem Compound: The PubChem Compound Database contains validated chemical depiction information provided to describe substances in PubChem Substance. Structures stored within PubChem Compounds are pre-clustered and cross-referenced by identity and similarity groups. 3. PubChem Substance. The PubChem Substance Database contains descriptions of samples, from a variety of sources, and links to biological screening results that are available in PubChem BioAssay. If the chemical contents of a sample are known, the description includes links to PubChem Compound.
AMCSD is an interface to a crystal structure database that includes every structure published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, as well as selected datasets from other journals. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association of Canada, and financed by the National Science Foundation. You may search by a mineral of your choice, or choose a mineral from a complete list to help aid your research.
The Reciprocal Net is a distributed database used by research crystallographers to store information about molecular structures; much of the data is available to the general public. The Reciprocal Net project is still under development. Currently, there are 18 participating crystallography laboratories online. The project is funded by the National Science Foundation (NSF) and part of the National Science Digital Library. The contents of this collection will come principally from structures contributed by participating crystallography laboratories, thus providing a means for teachers, students, and the general public to connect better with current chemistry research. The Reciprocal Net's emphasis is on obtaining structures of general interest and usefulness to those several classes of digital library users.
The ZINC Database contains commercially available compounds for structure based virtual screening. It currently has compounds that can simply be purchased. It is provided in ready-to-dock, 3D formats with molecules represented in biologically relevant forms. It is available in subsets for general screening as well as target-, chemotype- and vendor-focused subsets. ZINC is free for everyone to use and download at the website zinc.docking.org.
This database contains references to publications that include numerical data, general information, comments, and reviews on atomic line broadening and shifts, and is part of the collection of the NIST Atomic Spectroscopy Data Center https://www.nist.gov/pml/quantum-measurement/atomic-spectroscopy/atomic-spectroscopy-data-center-contacts.
This centre receives and archives precipitation chemistry data and complementary information from stations around the world. Data archived by this centre are accessible via connections with the WDCPC database. Freely available data from regional and national programmes with their own Web sites are accessible via links to these sites. The WDCPC is one of six World Data Centres in the World Meteorological Organization Global Atmosphere Watch (GAW). The focus on precipitation chemistry is described in the GAW Precipitation Chemistry Programme. Guidance on all aspects of collecting precipitation for chemical analysis is provided in the Manual for the GAW Precipitation Chemistry Programme (WMO-GAW Report No. 160).
This database gives values of the basic constants and conversion factors of physics and chemistry resulting from the 2002 least-squares adjustment of the fundamental physical constants as published by the CODATA Task Group on Fundamental Constants and recommended for international use by CODATA.
OpenKIM is an online suite of open source tools for molecular simulation of materials. These tools help to make molecular simulation more accessible and more reliable. Within OpenKIM, you will find an online resource for standardized testing and long-term warehousing of interatomic models and data, and an application programming interface (API) standard for coupling atomistic simulation codes and interatomic potential subroutines.
The Open Science Framework (OSF) is part network of research materials, part version control system, and part collaboration software. The purpose of the software is to support the scientist's workflow and help increase the alignment between scientific values and scientific practices. Document and archive studies. Move the organization and management of study materials from the desktop into the cloud. Labs can organize, share, and archive study materials among team members. Web-based project management reduces the likelihood of losing study materials due to computer malfunction, changing personnel, or just forgetting where you put the damn thing. Share and find materials. With a click, make study materials public so that other researchers can find, use and cite them. Find materials by other researchers to avoid reinventing something that already exists. Detail individual contribution. Assign citable, contributor credit to any research material - tools, analysis scripts, methods, measures, data. Increase transparency. Make as much of the scientific workflow public as desired - as it is developed or after publication of reports. Find public projects here. Registration. Registering materials can certify what was done in advance of data analysis, or confirm the exact state of the project at important points of the lifecycle such as manuscript submission or at the onset of data collection. Discover public registrations here. Manage scientific workflow. A structured, flexible system can provide efficiency gain to workflow and clarity to project objectives, as pictured.
Content type(s)
The Blue Obelisk Data Repository lists many important chemoinformatics data such as element and isotope properties, atomic radii, etc. including references to original literature. Developers can use this repository to make their software interoperable.
The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994.
ChemSynthesis is a freely accessible database of chemicals. This website contains substances with their synthesis references and physical properties such as melting point, boiling point and density. There are currently more than 40,000 compounds and more than 45,000 synthesis references in the database.
ChEMBL is a database of bioactive drug-like small molecules, it contains 2-D structures, calculated properties (e.g. logP, Molecular Weight, Lipinski Parameters, etc.) and abstracted bioactivities (e.g. binding constants, pharmacology and ADMET data). The data is abstracted and curated from the primary scientific literature, and cover a significant fraction of the SAR and discovery of modern drugs We attempt to normalise the bioactivities into a uniform set of end-points and units where possible, and also to tag the links between a molecular target and a published assay with a set of varying confidence levels. Additional data on clinical progress of compounds is being integrated into ChEMBL at the current time.
Data products developed and distributed by the National Institute of Standards and Technology span multiple disciplines of research and are widely used in research and development programs by industry and academia. NIST's publicly available data sets showcase its committment to providing accurate, well-curated measurements of physical properties, exemplified by the Standard Reference Data program, as well as its committment to advancing basic research. In accordance with U.S. Government Open Data Policy and the NIST Plan for providing public access to the results of federally funded research data, NIST maintains a publicly accessible listing of available data, the NIST Public Dataset List (json). Additionally, these data are assigned a Digital Object Identifier (DOI) to increase the discovery and access to research output; these DOIs are registered with DataCite and provide globally unique persistent identifiers. The NIST Science Data Portal provides a user-friendly discovery and exploration tool for publically available datasets at NIST. This portal is designed and developed with data.gov Project Open Data standards and principles. The portal software is hosted in the usnistgov github repository.
The Atomic Spectra Database (ASD) contains data for radiative transitions and energy levels in atoms and atomic ions. Data are included for observed transitions and energy levels of most of the known chemical elements. ASD contains data on spectral lines with wavelengths from about 0.2 Å (ångströms) to 60 m (meters). For many lines, ASD includes radiative transition probabilities. The energy level data include the ground states and ionization energies for all spectra. Except where noted, the data have been critically evaluated by NIST. For most spectra, wavelengths, transition probabilities, relative intensities, and energy levels are integrated, so that all the available information for a given transition is incorporated under a single listing. For classified lines, in addition to the observed wavelength, ASD includes the Ritz wavelength, which is the wavelength derived from the energy levels. The Ritz wavelengths are usually more precise than the observed ones. Line lists containing classified lines can be ordered by either multiplet (for a given spectrum) or wavelength. For some spectra, ASD includes lists of prominent lines with wavelengths and relative intensities but without energy-level classifications.