Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy. Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III 2008-2014; SDSS-IV 2013 ongoing), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. DSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Astronomie (MPIA Heidelberg), National Astronomical Observatory of China, New Mexico State University, New York University, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
The Analytical Geomagnetic Data Center of the Trans-Regional INTERMAGNET Segment is operated by the Geophysical Center of the Russian Academy of Sciences (GC RAS). Geomagnetic data are transmitted from observatories and stations located in Russia and near-abroad countries. The Center also provides access to spaceborne data products. The MAGNUS hardware-software system underlies the operation of the Center. Its particular feature is the automated real-time recognition of artificial (anthropogenic) disturbances in incoming data. Being based on fuzzy logic approach, this quality control service facilitates the preparation of the definitive magnetograms from preliminary records carried out by data experts manually. The MAGNUS system also performs on-the-fly multi-criteria estimation of geomagnetic activity using several indicators and provides online tools for modeling electromagnetic parameters in the near-Earth space. The collected geomagnetic data are stored using relational database management system. The geomagnetic database is intended for storing both 1-minute and 1-second data. The results of anthropogenic and natural disturbance recognition are also stored in the database.
The ProteomeXchange consortium has been set up to provide a single point of submission of MS proteomics data to the main existing proteomics repositories, and to encourage the data exchange between them for optimal data dissemination. Current members accepting submissions are: The PRIDE PRoteomics IDEntifications database at the European Bioinformatics Institute focusing mainly on shotgun mass spectrometry proteomics data PeptideAtlas/PASSEL focusing on SRM/MRM datasets.
The WDC is concerned with the collection, management, distribution and utilization of data from Chinese provinces, autonomous regions and counties,including: Resource data:management,distribution and utlilzation of land, water, climate, forest, grassland, minerals, energy, etc. Environmental data:pollution,environmental quality, change, natural disasters,soli erosion, etc. Biological resources:animals, plants,wildlife Social economy:agriculture, industry, transport, commerce,infrastructure,etc. Population and labor Geographic background data on scales of 1:4M,1:1M, 1:(1/2)M, 1:2500, etc.
Numerical database of atomic and molecular processes and particle-surface interactions. ALADDIN has formatted data on atomic structure and spectra (energy levels,wave lengths, and transition probabilities); electron and heavy particle collisions with atoms, ions, and molecules (cross sections and/or rate coefficients, including, in most cases, analytic fit to the data); sputtering of surfaces by impact of main plasma constituents and self sputtering; particle reflection from surfaces; thermophysical and thermomechanical properties of beryllium and pyrolytic graphites.
The COordinated Molecular Probe Line Extinction Thermal Emission Survey of Star Forming Regions (COMPLETE) provides a range of data complementary to the Spitzer Legacy Program "From Molecular Cores to Planet Forming Disks" (c2d) for the Perseus, Ophiuchus and Serpens regions. In combination with the Spitzer observations, COMPLETE will allow for detailed analysis and understanding of the physics of star formation on scales from 500 A.U. to 10 pc.