Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
The US Virtual Astronomical Observatory (VAO) is the VO effort based in the US, and it is one of many VO projects currently underway worldwide. The primary emphasis of the VAO is to provide new scientific research capabilities to the astronomy community. Thus an essential component of the VAO activity is obtaining input from US astronomers about the research tools that are most urgently needed in their work, and this information will guide the development efforts of the VAO. >>>!!!<<< Funding discontinued in 2014 and all software, documentation, and other digital assets developed under the VAO are stored in the VAO Project Repository https://sites.google.com/site/usvirtualobservatory/ . Code is archived on Github https://github.com/TomMcGlynn/usvirtualobservatory . >>>!!!<<<
The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy. Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III 2008-2014; SDSS-IV 2013 ongoing), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. DSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Astronomie (MPIA Heidelberg), National Astronomical Observatory of China, New Mexico State University, New York University, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
The MPC is responsible for the designation of minor bodies in the solar system: minor planets; comets, in conjunction with the Central Bureau for Astronomical Telegrams (CBAT); and natural satellites (also in conjunction with CBAT). The MPC is also responsible for the efficient collection, computation, checking and dissemination of astrometric observations and orbits for minor planets and comets
The COordinated Molecular Probe Line Extinction Thermal Emission Survey of Star Forming Regions (COMPLETE) provides a range of data complementary to the Spitzer Legacy Program "From Molecular Cores to Planet Forming Disks" (c2d) for the Perseus, Ophiuchus and Serpens regions. In combination with the Spitzer observations, COMPLETE will allow for detailed analysis and understanding of the physics of star formation on scales from 500 A.U. to 10 pc.
The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.