Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan and the C.U. Ariƫns Kappers brain collection from Amsterdam Netherlands.Introducing online atlases of the brains of humans, sheep, dolphins, and other animals. A world resource for illustrations of whole brains and stained sections from a great variety of mammals
ALSoD is a freely available database that has been transformed from a single gene storage facility recording mutations in the SOD1 gene to a multigene ALS bioinformatics repository and analytical instrument combining genotype, phenotype, and geographical information with associated analysis tools. These include a comparison tool to evaluate genes side by side or jointly with user configurable features, a pathogenicity prediction tool using a combination of computational approaches to distinguish variants with nonfunctional characteristics from disease-associated mutations with more dangerous consequences, and a credibility tool to enable ALS researchers to objectively assess the evidence for gene causation in ALS. Furthermore, integration of external tools, systems for feedback, annotation by users, and two-way links to collaborators hosting complementary databases further enhance the functionality of ALSoD.