Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
<<<!!!<<< This repository is no longer available. >>>!!!>>> NetPath is currently one of the largest open-source repository of human signaling pathways that is all set to become a community standard to meet the challenges in functional genomics and systems biology. Signaling networks are the key to deciphering many of the complex networks that govern the machinery inside the cell. Several signaling molecules play an important role in disease processes that are a direct result of their altered functioning and are now recognized as potential therapeutic targets. Understanding how to restore the proper functioning of these pathways that have become deregulated in disease, is needed for accelerating biomedical research. This resource is aimed at demystifying the biological pathways and highlights the key relationships and connections between them. Apart from this, pathways provide a way of reducing the dimensionality of high throughput data, by grouping thousands of genes, proteins and metabolites at functional level into just several hundreds of pathways for an experiment. Identifying the active pathways that differ between two conditions can have more explanatory power than just a simple list of differentially expressed genes and proteins.
Content type(s)
LIAS is a global information system for Lichenized and Non-Lichenized Ascomycetes. It includes several interoperable data repositories. In recent years, the two core components ‘LIAS names’ and ‘LIAS light’ have been much enlarged. LIAS light is storing phenotypic trait data. They includes > 10,700 descriptions (about 2/3 of all known lichen species), each with up to 75 descriptors comprising 2,000 traits (descriptor states and values), including 800 secondary metabolites. 500 traits may have biological functions and more than 1,000 may have phylogenetic relevance. LIAS is thus one of the most comprehensive trait databases in organismal biology. The online interactive identification key for more than 10,700 lichens is powered by the Java applet NaviKey and has been translated into 19 languages (besides English) in cooperation with lichenologists worldwide. The component ‘LIAS names’ is a platform for managing taxonomic names and classifications with currently >50,000 names, including the c. 12,000 accepted species and recognized synonyms. The LIAS portal contents, interfaces, and databases run on servers of the IT Center of the Bavarian Natural History Collections and are maintained there. 'LIAS names' and ‘LIAS light’ also deliver content data to the Catalogue of Life, acting as the Global Species Database (GSD) for lichens. LIAS gtm is a database for visualising the geographic distribution of lichen traits. LIAS is powered by the Diversity Workbench database framework with several interfaces for data management and publication. The LIAS long-term project was initiated in the early 1990s and has since been continued with funding from the DFG, the BMBF, and the EU.
The CERN Open Data portal is the access point to a growing range of data produced through the research performed at CERN. It disseminates the preserved output from various research activities, including accompanying software and documentation which is needed to understand and analyze the data being shared.
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.
Historic Environment Scotland was formed in October 2015 following the merger between Historic Scotland and The Royal Commission on the Ancient and Historical Monuments of Scotland. Historic Environment Scotland is the lead public body established to investigate, care for and promote Scotland’s historic environment. We lead and enable Scotland’s first historic environment strategy Our Place in Time, which sets out how our historic environment will be managed. It ensures our historic environment is cared for, valued and enhanced, both now and for future generations.
<<<!!!<<< Retirement of UniProt Metagenomic and Environmental Sequences (UniMES): UniProt has retired UniMES as there is now a resource at the EBI that is dedicated to serving metagenomic researchers. Henceforth, we recommend using the EBI Metagenomics portal instead https://www.ebi.ac.uk/metagenomics/ . In addition to providing a repository of metagenomics sequence data, EBI Metagenomics allows you to view functional and taxonomic analyses and to submit your own samples for analysis. >>>!!!>>> The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically developed for metagenomic and environmental data. We provide UniMES clusters in order to obtain complete coverage of sequence space at different resolutions.