Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 195 result(s)
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
Country
The database GEOROC (Geochemistry of Rocks of the Oceans and Continents) is a comprehensive collection of published analyses of igneous and metamorphic rocks and minerals. It contains major and trace element concentrations, radiogenic and nonradiogenic isotope ratios as well as analytical ages for whole rocks, glasses, minerals and inclusions. Metadata include geospatial and other sample information, analytical details and references. The database was established by the Max Plank Institute for Chemistry, Mainz. It is now maintained by the Digital Geochemical Data Infrastructure (DIGIS) project at Göttingen University.
The Online Data Portal (ODP) is an evolving project to support collaborative river restoration projects, such as the TRRP. The goal is to provide a centralized clearing house of documents and data for program partners, stakeholders, and the public. The functionality and data holdings will continue to be expanded over the next few years. The ability to store Data Packages is new as of Fall 2011 and holdings should expand substantially in the months afterward. A project to scan many older documents also began in December 2011. Simple time-series datasets have long been stored in the ODP, but holdings of these data are likely to increase as TRRP implements an upcoming Data Management and Utility Plan. Major upgrades to the Interactive Map are expected to start in winter and spring of 2012. The long term vision is that many data resources will be accessible both by text searches and via the Interactive Map. The ODP will be available for use by other river restoration programs. ODP is followed by TRRP DataPort.
Earth Resources Observation and Science (EROS) Center is a remotely sensed data management, systems development, and research field center for the U.S. Geological Survey's (USGS) Climate and Land Use Change Mission Area. The USGS is a bureau of the U.S. Department of the Interior. It currently houses one of the largest computer complexes in the Department of the Interior. EROS has approximately 600 government and contractor employees.
The Marine Geoscience Data System (MGDS) is a trusted data repository that provides free public access to a curated collection of marine geophysical data products and complementary data related to understanding the formation and evolution of the seafloor and sub-seafloor. Developed and operated by domain scientists and technical specialists with deep knowledge about the creation, analysis and scientific interpretation of marine geoscience data, the system makes available a digital library of data files described by a rich curated metadata catalog. MGDS provides tools and services for the discovery and download of data collected throughout the global oceans. Primary data types are geophysical field data including active source seismic data, potential field, bathymetry, sidescan sonar, near-bottom imagery, other seafloor senor data as well as a diverse array of processed data and interpreted data products (e.g. seismic interpretations, microseismicity catalogs, geologic maps and interpretations, photomosaics and visualizations). Our data resources support scientists working broadly on solid earth science problems ranging from mid-ocean ridge, subduction zone and hotspot processes, to geohazards, continental margin evolution, sediment transport at glaciated and unglaciated margins.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.
Country
AGS delivers geoscience in several key areas, including surficial mapping, bedrock mapping, geological modelling, resource evaluation (hydrocarbons, minerals), groundwater, and geological hazards. We also are responsible for maintaining the Alberta Table of Formations and providing geoscience outreach to stakeholders ranging from professional colleagues and academia to the general public.
<<<!!!<<< As of 2017-05-17 the data catalog is no longer available >>>!!!>>> DataFed is a web services-based software that non-intrusively mediates between autonomous, distributed data providers and users. The main goals of DataFed are: Aid air quality management and science by effective use of relevant data - Facilitate the access and flow of atmospheric data from provider to users - Support the development of user-driven data processing value chains. DataFed Catalog links searchable Datafed applications worldwide.
Country
Indian Space Science Programme has the primary goal of promoting and establishing space science and technology programme. The ISSDC is the primary data center to be retrieved from Indian space science missions. This center is responsible for the collections of payload data and related ancillary data for space science missions such as Chandrayaan, Astrosat, Youthsat, etc. The payload data sets can include a range of information including satellite images, X-ray spectrometer readings, and other space observations.
Country
Earth-Prints is an open archive created and maintained by Istituto Nazionale di Geofisica e Vulcanologia. This digital collection allows users to browse, search and access manuscripts, journal articles, theses, conference materials, books, book-chapters, web products. The goal of our repository is to collect, capture, disseminate and preserve the results of research in the fields of Atmosphere, Cryosphere, Hydrosphere and Solid Earth. Earth-prints is young and growing rapidly.
Country
The geophysical database, GERDA, is a strong tool for data storage, handling and QC. Data are uploaded to and downloaded from the GERDA database through this website. GERDA is the Danish national database on shallow geophysical data. Since its establishment in 1998-2000, the database has been continuously developed. The database is hosted by the Geological Survey of Denmark and Greenland (GEUS).
Country
Geoscientific Data & Discovery Publishing Center (GDD) is based on the geological scientific data generated globally, establishing policies and systems for the scientific data publishing, absorbing the concepts and methods of international open data, and joint Digital Object Unique Identifier-DOI registration agencies to provide standard data reference formats and permanent access address for data references, doing publishing through the Internet platform, which combines innovation and advance. GDD mainly includes data descriptor and entity data publishing. The data papers describe entity data and corresponding metadata information. The entity data includes common shared data such as geographic information, geologic maps, and databases, and also includes multiple data types, such as documents, archive records, data forms and other multimedia formed during geological work, various data-centric applications, database interface services, and typical data services.
<<<!!!<<< This repository is no longer available. >>>!!!>>>The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.
Country
ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.
<<<!!!<<< Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained >>>!!!>>> GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.
Country
Applying the Terrestrial Systems Modeling Platform, TerrSysMP, this dataset consists of the first simulated long-term (1989-2018), high-resolution (~12.5km) terrestrial system climatology over Europe, which comprises variables from groundwater across the land surface to the top of atmosphere (G2A). This data set constitutes a near-natural realization of the European terrestrial system, which cannot be obtained from observations, and can, thus, serve as a reference for global change simulations including human water use and climate change.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.