Filter

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 27 result(s)
The mission of the GO Consortium is to develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life. The Gene Ontology (GO) knowledgebase is the world’s largest source of information on the functions of genes. This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research.
Country
GeneMANI helps you predict the function of your favourite genes and gene sets. GeneMania, a real-time multiple association network integration algorithm for predicting gene function.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
The Arabidopsis Information Resource (TAIR) maintains a database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana . Data available from TAIR includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from our data pages to other Arabidopsis resources.
NetSlim is a resource of high-confidence signaling pathway maps derived from NetPath pathway reactions. 40-60% of the molecules and their reactions in NetPath pathways are available in NetSlim.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with tools to facilitate research. The key components are: (1) a molecular atlas of gene expression for the developing organs of the GenitoUrinary (GU) tract; (2) a high resolution molecular anatomy that highlights development of the GU system; (3) mouse strains to facilitate developmental and functional studies within the GU system; (4) tutorials describing GU organogenesis; and (5) rapid access to primary data via the GUDMAP database.
>>>>!!!!<<<< AspGD data are being integrated into FungiDB. Please click here for additional details http://fungidb.org/ . Discussion of how to maximize the value of FungiDB for the Aspergillus research community will be a major topic at the upcoming AsperFest12 meeting at Asilomar (March 16-17, 2015). >>>>!!!!<<<< AspGD is an organized collection of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). AspGD contains information about genes and proteins of multiple Aspergillus species; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Aspergillus species.
The Saccharomyces Genome Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms.
<<<!!!<<< The NCBI BioSystems Database will be retired in March 2022. >>>!!!>>> This retirement includes the representation of BioSystems records in the NCBI Entrez system and viewers of BioSystems content. NCBI now provides metabolic pathway and other biosystems data through the regularly updated PubChem Pathways resource (https://pubchemdocs.ncbi.nlm.nih.gov/pathways) that offers a fresh, extended, and more modern interface.
The BioCyc database collection of Pathway/Genome Databases (PGDBs) provides a reference on the genomes and metabolic pathways of thousands of sequenced organisms. BioCyc PGDBs are generated by software that predict the metabolic pathways of completely sequenced organisms, predict which genes code for missing enzymes in metabolic pathways, and predict operons. BioCyc also integrates information from other bioinformatics databases, such as protein feature and Gene Ontology information from UniProt. The BioCyc website provides a suite of software tools for database searching and visualization, for omics data analysis, and for comparative genomics and comparative pathway questions. From 2016 on, access to the EcoCyc and MetaCyc databases will remain free. Subscriptions to the other 7,600 BioCyc databases will be available to institutions (e.g., libraries), and to individuals. Access to licensed databases via: https://biocyc.org/Product-summary.shtml.
Country
Species included in PlantTFDB 4.0 covers the main lineages of green plants. Therefore, PlantTFDB provides genomic TF repertoires across Viridiplantae. To provide comprehensive information for the TF family, a brief introduction and key references are presented for each family. Comprehensive annotations are made for each identified TF, including functional domains, 3D structures, gene ontology (GO), plant ontology (PO), expression information, expert-curated functional description, regulation information, interaction, conserved elements, references, and annotations in various databases such as UniProt, RefSeq, TransFac, STRING, and VISTA. By inferring orthologous groups and constructing phylogenetic trees, evolutionary relationships among identified TFs were inferred. In addition, PlantTFDB has a simple and user-friendly interface to allow users to query based on combined conditions or make sequence similarity search using BLAST. The new version PlantTFDB 5.0 has been incorporated into PlantRegMap http://plantregmap.gao-lab.org/.
<<<!!!<<< This repository is no longer available. >>>!!!>>> The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database currently hosts DNA binding data for 406 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse, and human. The database's web tools (on the right) include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences
=== !!!!! Due to changes in technology and funding, the RAD website is no longer available !!!!! ===
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
The Pseudomonas Genome Database collaborates with an international panel of expert Pseudomonas researchers to provide high quality updates to the PAO1 genome annotation and make cutting edge genome analysis data available.
>>>!!!<<< as stated 2017-06-09 MPIDB is no longer available under URL http://www.jcvi.org/mpidb/about.php >>>!!!<<< The microbial protein interaction database (MPIDB) aims to collect and provide all known physical microbial interactions. Currently, 24,295 experimentally determined interactions among proteins of 250 bacterial species/strains can be browsed and downloaded. These microbial interactions have been manually curated from the literature or imported from other databases (IntAct, DIP, BIND, MINT) and are linked to 26,578 experimental evidences (PubMed ID, PSI-MI methods). In contrast to these databases, interactions in MPIDB are further supported by 68,346 additional evidences based on interaction conservation, protein complex membership, and 3D domain contacts (iPfam, 3did). We do not include (spoke/matrix) binary interactions infered from pull-down experiments.
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.