Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
Country
eLMSG (eLibrary of Microbial Systematics and Genomics) is a web microbial library that integrates not only taxonomic information, but also genomic information and phenotypic information (including morphology, physiology, biochemistry and enzymology). The taxonomic system of eLMSG is manually curated and composed of all validly and some effectively published taxa. For each taxon, the Latin name, taxon ID (NCBI taxonomy), etymology, rank, lineage, the dates of effective and/or valid publication, feature descriptions, nomenclature type and references for the proposal and emendations during the history of the taxon are presented. Besides these data, the species taxa contain information about 16S rRNA gene and/or genome sequences. All publicly available genome data of each type species including both type and non-type strains were collected, and if needed, re-annotated using the standardized analysis pipeline. Furthermore, pan-genomic data analyses were conducted for species with ≥5 genome sequences available. Finally, for all type species, taxonomically relevant phenotypic data were extracted and curated from literatures, which were further indexed into eLMSG as searchable and analyzable data records. Taken together, eLMSG is a comprehensive web platform for studying mi- crobial systematics and genomics, potentially useful for better understanding microbial taxonomy, natural evolutionary processes and ecological relationships.
Country
BCCM/ULC is a small and dedicated public collection, currently containing one of the largest collections of documented (sub)polar cyanobacteria worldwide. The BCCM/ULC collection is hosted by the In-Bios research unit of the University of Liège. The host Unit is very active in research projects concerning the cyanobacterial diversity and biogeography, with a focus on polar biotopes. The participation to field expeditions in the Antarctic and Arctic has enabled to collect samples in many locations. Moreover, taxonomic research is carried out by the host Unit to improve the classification of the cyanobacterial phylum.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
Country
The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. It is intended to be used for applications in metabolomics, clinical chemistry, biomarker discovery and general education.
Country
FANTOM stands for 'Functional Annotation of the Mammalian Genome' and is the name of an international research consortium organized by the RIKEN Omics Science Center. The FANTOM5 project aims to build a full understanding of transcriptional regulation in a human system by generating transcriptional regulatory networks that define every human cell type.