Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 17 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α (Lya) emitting galaxies with redshifts 2.9≲z≲6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δz≃0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available at the website.
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
<<<!!!<<< This MultiDark application is now integrated into CosmoSim (https://www.cosmosim.org/ , all data and much more is available there. The old MultiDark server is no longer available. >>>!!!>>> The MultiDark database provides results from cosmological simulations performed within the MultiDark project. This database can be queried by entering SQL statements directly into the Query Form. The access to that form and thus access to the public & private databases is password protected.
Country
Rodare is the institutional research data repository at HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Rodare allows HZDR researchers to upload their research software and data and enrich those with metadata to make them findable, accessible, interoperable and retrievable (FAIR). By publishing all associated research software and data via Rodare research reproducibility can be improved. Uploads receive a Digital Object Identfier (DOI) and can be harvested via a OAI-PMH interface.
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
Country
The TRR170-DB was set up to manage data products of the collaborative research center TRR 170 'Late Accretion onto Terrestrial Planets' (https://www.trr170-lateaccretion.de/). However, meanwhile the repository also stores data by other institutions and researchers. Data include laboratory and other instrumental data on planetary samples, remote sensing data, geological maps and model simulations.
Country
The interdisciplinary data platform INPTDAT provides easy access to research data and information from all fields of applied plasma physics and plasma medicine. It aims to support the findability, accessibility, interoperability and re-use of data for the low-temperature plasma physics community.
Country
The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark and Bolshoi project, and the CLUES project. The CosmoSim webpage provides access to several cosmological simulations, with a separate database for each simulation. Simulations overview: https://www.cosmosim.org/cms/simulations/simulations-overview/ . CosmoSim is a contribution to the German Astrophysical Virtual Observatory.
When published in 2005, the Millennium Run was the largest ever simulation of the formation of structure within the ΛCDM cosmology. It uses 10(10) particles to follow the dark matter distribution in a cubic region 500h(−1)Mpc on a side, and has a spatial resolution of 5h−1kpc. Application of simplified modelling techniques to the stored output of this calculation allows the formation and evolution of the ~10(7) galaxies more luminous than the Small Magellanic Cloud to be simulated for a variety of assumptions about the detailed physics involved. As part of the activities of the German Astrophysical Virtual Observatory we have created relational databases to store the detailed assembly histories both of all the haloes and subhaloes resolved by the simulation, and of all the galaxies that form within these structures for two independent models of the galaxy formation physics. We have implemented a Structured Query Language (SQL) server on these databases. This allows easy access to many properties of the galaxies and halos, as well as to the spatial and temporal relations between them. Information is output in table format compatible with standard Virtual Observatory tools. With this announcement (from 1/8/2006) we are making these structures fully accessible to all users. Interested scientists can learn SQL and test queries on a small, openly accessible version of the Millennium Run (with volume 1/512 that of the full simulation). They can then request accounts to run similar queries on the databases for the full simulations. In 2008 and 2012 the simulations were repeated.
Launched in December 2013, Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of stars in the Milky Way, it will answer questions about the origin and evolution of our home galaxy. The first data release (2016) contains three-dimensional positions and two-dimensional motions of a subset of two million stars. The second data release (2018) increases that number to over 1.6 Billion. Gaia’s measurements are as precise as planned, paving the way to a better understanding of our galaxy and its neighborhood. The AIP hosts the Gaia data as one of the external data centers along with the main Gaia archive maintained by ESAC and provides access to the Gaia data releases as part of Gaia Data Processing and Analysis Consortium (DPAC).
This repository stores and links the openly available power-grid frequency recordings across the globe. This database is comprised of open data existent across three dimensions: - TSO data: Transmission System's Operator (TSO) recordings made public; - Research projects: Open-data database research projects; - Independent Gatherings: Industrial, private, or personal recordings that were made publicly available.