Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
Country
ConsensusPathDB integrates interaction networks in humans (and in the model organisms - yeast and mouse) including binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical pathways. Data originate from public resources for interactions and interactions curated from the literature. The interaction data are integrated in a complementary manner to avoid redundancies.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
Country
SISSA Open Data is the Sissa repository for the research data managment. It is an institutional repository that captures, stores, preserves, and redistributes the data of the SISSA scientific community in digital form. SISSA Open Data is managed by the SISSA Library as a service to the SISSA scientific community.
MetaCyc is a curated database of experimentally elucidated metabolic pathways from all domains of life. MetaCyc contains pathways involved in both primary and secondary metabolism, as well as associated metabolites, reactions, enzymes, and genes. The goal of MetaCyc is to catalog the universe of metabolism by storing a representative sample of each experimentally elucidated pathway. MetaCyc applications include: Online encyclopedia of metabolism, Prediction of metabolic pathways in sequenced genomes, Support metabolic engineering via enzyme database, Metabolite database aids. metabolomics research.
Country
>>>!!!<<< OMICtools is no longer online >>>!!!<<< We founded OMICtools in 2012 with the vision to drive progress in life science. We wanted to empower life science practitioners all over the world to achieve breakthroughs by getting data to talk. While we made tremendous progress over the past three years, developing a bioinformatics database of software and dynamic protocols, attracting more than 1.5M visitors a year, we lacked the financial support we needed to continue. We certainly gave it our all. We'd like to thank everyone who believed in us and supported us on this journey: all our users, our community, our friends, families and employees (who we consider as our extended family!). omicX will probably shut down its operations within the next few weeks. The team and I remain firmly committed to our vision, particularly at this very difficult time. It is now, more than ever before, that researchers need access to a resource that pools collective scientific intelligence. We have accumulated an awful lot of experience which we are keen to share. If your institution would be interested in taking over our website and database, to provide researchers with continued access to the platform, or you simply want to stay in touch with the omicX team, contact us at contact@omictools.com or at carine.toutain@fhbx.eu.