Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 20 result(s)
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
Country
The CRC1211DB is the project-database of the Collaborative Research Centre 1211 "Earth -Evolution at the dry limit" (CRC1211,https://sfb1211.uni-koeln.de/) funded by the German Research Foundation (DFG, German Research Foundation – Projektnummer 268236062). The project-database is a new implementation of the TR32DB and online since 2016. It handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, biology, geography, geology, meteorology and remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected.
Country
The COSYNA observatory measures key physical, sedimentary, geochemical and biological parameters at high temporal resolution in the water column and at the sediment and atmospheric boundaries. COSYNA delivers spatial representation through a set of fixed and moving platforms, like tidal flats poles, FerryBoxes, gliders, ship surveys, towed devices, remote sensing, etc.. New technologies like underwater nodes, benthic landers and automated sensors for water biogeochemical parameters are further developed and tested. A great variety of parameters is measured and processed, stored, analyzed, assimilated into models and visualized.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
<<<!!!<<< Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained >>>!!!>>> GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.
The Shuttle Radar Topography Mission, which flew aboard NASA's Space Shuttle Endeavour during an 11-day mission in 2000, made the first near-global topographical map of Earth, collecting data on nearly 80 percent of Earth's land surfaces. The instrument's design was essentially a modified version of the earlier Shuttle Imaging Radar instruments with a second antenna added to allow for topographic mapping using a technique similar to stereo photography.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
<<<<< ----- !!! The data is in the phase of migration to another system. Therefore the repository is no longer available. This record is out-dated.; 2020-10-06 !!! ----- >>>>> Due to the changes at the individual IGS analysis centers during these years the resulting time series of global geodetic parameters are inhomogeneous and inconsistent. A geophysical interpretation of these long series and the realization of a high-accuracy global reference frame are therefore difficult and questionable. The GPS reprocessing project GPS-PDR (Potsdam Dresden Reprocessing), initiated by TU München and TU Dresden and continued by GFZ Potsdam and TU Dresden, provides selected products of a homogeneously reprocessed global GPS network such as GPS satellite orbits and Earth rotation parameters.
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
Country
The GeoPortal.rlp allows the central search and visualization of geo data. Inside the geo data infrastructure of Rhineland-Palatinate the GeoPortal.rlp inherit the central duty a service orientated branch exchange between user and offerer of geo data. The GeoPortal.rlp establishes the access to geo data over the electronic network. The GeoPortal.rlp was brought on line on January, 8th 2007 for the first time, on February, 2nd 2011 it occured a site-relaunch.
Country
ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.
Country
The Service Centre of the Federal Government for Geo-Information and Geodesy (Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie - DLZ) provides geodetic and geo-topographic reference data of the Federal Government centrally to federal institutions, public administrations, economy, science and citizens. The establishment of the Service Centre is based on the Federal Geographic Reference Data Act (Bundesgeoreferenzdatengesetz − BGeoRG), which came into effect on 1 November 2012. This act regulates use, quality and technology of the geodetic and geo-topographic reference systems, networks and data.
Country
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first bistatic SAR mission in space. TanDEM-X and its twin satellite TerraSAR-X are flying in a closely controlled formation with typical distances between 250 and 500 meters. Primary mission objective is the generation of a consistent global digital elevation model with few meter level height accuracy. Beyond that, GFZ equipped TanDEM-X with a geodetic grade GPS receiver for precise baseline determination and for radio occultation measurements. TanDEM-X was launched on June 21, 2010 for a 5 year mission lifetime. The GPS radio occultation data of the German TanDEM-X satellite are analysed and globally distributed vertical atmospheric profiles (bending angles, refractivity, temperature, water vapor) are derived and provided for the international user community.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
Country
The TRR228DB is the project-database of the Collaborative Research Centre 228 "Future Rural Africa: Future-making and social-ecological transformation" (CRC/Transregio 228, https://www.crc228.de) funded by the German Research Foundation (DFG, German Research Foundation – Project number 328966760). The project-database is a new implementation of the TR32DB and online since 2018. It handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne and Bonn) and research fields (e.g. anthropology, agroeconomics, ecology, ethnology, geography, politics and soil sciences). The data is resulting from several field campaigns, interviews, surveys, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected.
Country
GEOFON seeks to facilitate cooperation in seismological research and earthquake and tsunami hazard mitigation by providing rapid transnational access to seismological data and source parameters of large earthquakes, and keeping these data accessible in the long term. It pursues these aims by operating and maintaining a global network of permanent broadband stations in cooperation with local partners, facilitating real time access to data from this network and those of many partner networks and plate boundary observatories, providing a permanent and secure archive for seismological data. It also archives and makes accessible data from temporary experiments carried out by scientists at German universities and institutions, thereby fostering cooperation and encouraging the full exploitation of all acquired data and serving as the permanent archive for the Geophysical Instrument Pool at Potsdam (GIPP). It also organises the data exchange of real-time and archived data with partner institutions and international centres.
The International Center for Global Earth Models collects and distributes historical and actual global gravity field models of the Earth and offers calculation service for derived quantities. In particular the tasks include: collecting and archiving of all existing global gravity field models, web interface for getting access to global gravity field models, web based visualization of the gravity field models their differences and their time variation, web based service for calculating different functionals of the gravity field models, web site for tutorials on spherical harmonics and the theory of the calculation service. As new service since 2016, ICGEM is providing a Digital Object Identifier (DOI) for the data set of the model (the coefficients).
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.