Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
Atmosphere to Electrons (A2e) is a new, multi-year, multi-stakeholder U.S. Department of Energy (DOE) research and development initiative tasked with improving wind plant performance and mitigating risk and uncertainty to achieve substantial reduction in the cost of wind energy production. The A2e strategic vision will enable a new generation of wind plant technology, in which smart wind plants are designed to achieve optimized performance stemming from more complete knowledge of the inflow wind resource and complex flow through the wind plant.
Country
GCRIS Database is a research and performance evaluation information system that enables searching and discovering all research outputs within the Izmir Institute of Technology research ecosystem, associating these outputs with researchers, providing advanced reporting with different metrics, and supporting corporate strategic decisions. Besides, it is an institutional repository at international standards that brings together and organizes all kinds of academic outputs related to research activities and allows sharing with the whole scientific world by providing long-term preservation.
XSEDE is a single virtual system that scientists can use to interactively share computing resources, data and expertise. People around the world use these resources and services — things like supercomputers, collections of data and new tools — to improve our planet. The Extreme Science and Engineering Discovery Environment (XSEDE) is the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world. It is a single virtual system that scientists can use to interactively share computing resources, data, and expertise.
Country
The Better Outcomes Registry & Network (BORN) is Ontario's prescribed perinatal, newborn and child registry with the role of facilitating quality care for families across the province. BORN collects, interprets, shares and rigorously protects high-quality data essential to making Ontario the safest place in the world to have a baby.
Country
The Canadian Institute for Health Information (CIHI) provides comparable and actionable data and information that are used to accelerate improvements in health care, health system performance and population health across Canada.
CSDMS is a virtual home for a vibrant and growing community of about 1,000 international modeling experts and students who study the dynamic interactions of lithosphere, hydrosphere, cryosphere, and atmosphere at Earth’s surface. Participating in cross-disciplinary groups, members develop integrated software modules that predict the movement of water, sediment, and nutrients across landscapes and into the ocean. We share an open library of models, software, and access to high-performance computing. We also share knowledge that helps create higher-resolution simulations, often involving higher complexity algorithms. Together, we support the discovery, use, and conservation of natural resources; mitigation of natural hazards; geotechnical support of commercial and infrastructure development; environmental stewardship; and terrestrial surveillance for global security.
Using a combination of remote sensing data and ground observations as inputs, CHC scientists have developed rainfall estimation techniques and other resources to support drought monitoring and predict crop performance in parts of the world vulnerable to crop failure. Policymakers within governments and non-governmental organizations rely on CHC decision-support products to make critical resource allocation decisions. The CHC's scientific focus is "geospatial hydroclimatology," with an emphasis on the early detection and forecasting of hydroclimatic hazards related to food-security droughts and floods. Basic research seeks an improved understanding of the climatic processes that govern drought and flood hazards in FEWS NET countries (https://fews.net/). The CHC develops better techniques, algorithms, and modeling applications in order to use remote sensing and other geospatial data for hazards early warning.
Cell phones have become an important platform for the understanding of social dynamics and influence, because of their pervasiveness, sensing capabilities, and computational power. Many applications have emerged in recent years in mobile health, mobile banking, location based services, media democracy, and social movements. With these new capabilities, we can potentially be able to identify exact points and times of infection for diseases, determine who most influences us to gain weight or become healthier, know exactly how information flows among employees and productivity emerges in our work spaces, and understand how rumors spread. In an attempt to address these challenges, we release several mobile data sets here in "Reality Commons" that contain the dynamics of several communities of about 100 people each. We invite researchers to propose and submit their own applications of the data to demonstrate the scientific and business values of these data sets, suggest how to meaningfully extend these experiments to larger populations, and develop the math that fits agent-based models or systems dynamics models to larger populations. These data sets were collected with tools developed in the MIT Human Dynamics Lab and are now available as open source projects or at cost.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
Country
EarthByte is an internationally leading eGeoscience collaboration between several Australian Universities, international centres of excellence and industry partners. One of the fundamental aims of the EarthByte Group is geodata synthesis through space and time, assimilating the wealth of disparate geological and geophysical data into a four-dimensional Earth model including tectonics, geodynamics and surface processes. The EarthByte Group is pursuing open innovation via collaborative software development, high performance and distributed computing, “big data” analysis and by making open access digital data collections available to the community.
The Phonogrammarchiv is a multi-disciplinary research sound and video archive, covering holdings from all continents. Since its foundation in 1899 the Phonogrammarchiv has been building up its holdings by cooperating with Austrian scholars and archiving their collected material, or by fieldwork conducted by staff members on special topics exploring new fields of methods and contents. The main tasks comprise the production, annotation, cataloguing and long-term preservation of audio-visual field recordings, making the cultural heritage available for future generations and enabling the dissemination of the recordings as well as technical developments in the field of AV recording and storage. Thus the Phonogrammarchiv adds to infrastructural performance valuable to both the scholarly community and the public at large.
HydroShare is a system operated by The Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) that enables users to share and publish data and models in a variety of flexible formats, and to make this information available in a citable, shareable and discoverable manner. HydroShare includes a repository for data and models, and tools (web apps) that can act on content in HydroShare providing users with a gateway to high performance computing and computing in the cloud. With HydroShare you can: share data and models with colleagues; manage access to shared content; share, access, visualize, and manipulate a broad set of hydrologic data types and models; publish data and models and obtain a citable digital object identifier (DOI); aggregate resources into collections; discover and access data and models published by others; use the web services application programming interface (API) to programmatically access resources; and use integrated web applications to visualize, analyze and run models with data in HydroShare.
The GRSF, the Global Record of Stocks and Fisheries, integrates data from three authoritative sources: FIRMS (Fisheries and Resources Monitoring System), RAM (RAM Legacy Stock Assessment Database) and FishSource (Program of the Sustainable Fisheries Partnership). The GRSF content publicly disseminated through this catalogue is distributed as a beta version to test the logic to generate unique identifiers for stocks and fisheries. The access to and review of collated stock and fishery data is restricted to selected users. This beta release can contain errors and we welcome feedback on content and software performance, as well as the overall usability. Beta users are advised that information on this site is provided on an "as is" and "as available" basis. The accuracy, completeness or authenticity of the information on the GRSF catalogue is not guaranteed. It is reserved the right to alter, limit or discontinue any part of this service at its discretion. Under no circumstances shall the GRSF be liable for any loss, damage, liability or expense suffered that is claimed to result from the use of information posted on this site, including without limitation, any fault, error, omission, interruption or delay. The GRSF is an active database, updates and additions will continue after the beta release. For further information, or for using the GRSF unique identifiers as a beta tester please contact FIRMS-Secretariat@fao.org.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
The Fragile Families and Child Wellbeing Study changed its name to The Future of Families and Child Wellbeing Study (FFCWS). Note that all documentation issued prior to January 2023 contains the study’s former name. Any further reference to FFCWS should kindly observe this name change. The Fragile Families & Child Wellbeing Study is following a cohort of nearly 5,000 children born in large U.S. cities between 1998 and 2000 (roughly three-quarters of whom were born to unmarried parents). We refer to unmarried parents and their children as “fragile families” to underscore that they are families and that they are at greater risk of breaking up and living in poverty than more traditional families. The core Study was originally designed to primarily address four questions of great interest to researchers and policy makers: (1) What are the conditions and capabilities of unmarried parents, especially fathers?; (2) What is the nature of the relationships between unmarried parents?; (3) How do children born into these families fare?; and (4) How do policies and environmental conditions affect families and children?