Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 39 result(s)
Country
The CDPP is the French national data centre for natural plasmas of the solar system. The CDPP assures the long term preservation of data obtained primarily from instruments built using French resources, and renders them readily accessible and exploitable by the international community. The CDPP also provides services to enable on-line data analysis (AMDA), 3D data visualization in context (3DView), and a propagation tool which bridges solar perturbations to in-situ measurements. The CDPP is involved in the development of interoperability, participates in several Virtual Observatory projects, and supports data distribution for scientific missions (Solar Orbiter, JUICE).
Country
NSSDC is the nation-level space science data center which recognized by the Ministry of Science and Technology of China. As a repository for space science data, NSSDC assumes the responsibility of the long-term stewardship and offering a reliable service of space science data in China. It also has been the Chinese center for space science of the World Data Center (WDC) since 1988. In 2013, NSSDC became a regular member of World Data System. Data resources are concentrated in the following fields of space physics and space environment, space astronomy, lunar and planetary science, space application and engineering. In space physics, the NSSDC maintains space-based observation data and ground-based observation data of the middle and upper atmosphere, ionosphere and earth surface, from Geo-space Double Star Exploration Program and Meridian Project. In space astronomy, NSSDC archived pointed observation data of Hard X-ray Modulation Telescope. In lunar and planetary science, space application and engineering, NSSDC also collects detection data of Chang’E from Lunar Exploration Program and science products of BeiDou satellites.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
The IERS provides data on Earth orientation, on the International Celestial Reference System/Frame, on the International Terrestrial Reference System/Frame, and on geophysical fluids. It maintains also Conventions containing models, constants and standards.
Country
The repository is no longer available. <<<!!!<<< 2018-08-29: no more access to GAPHYOR >>>!!!>>> Important note: The database was no longer feeded with data or updated in the years 2005-2007. The financial support of the project had been stopped a few yers ahead that time. The maintainance of the IT system couldn't be ensured anymore and system was shutdown in 2015. Please see the other databases in the field.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
Under the World Climate Research Programme (WCRP) the Working Group on Coupled Modelling (WGCM) established the Coupled Model Intercomparison Project (CMIP) as a standard experimental protocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. This framework enables a diverse community of scientists to analyze GCMs in a systematic fashion, a process which serves to facilitate model improvement. Virtually the entire international climate modeling community has participated in this project since its inception in 1995. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives much of the CMIP data and provides other support for CMIP. We are now beginning the process towards the IPCC Fifth Assessment Report and with it the CMIP5 intercomparison activity. The CMIP5 (CMIP Phase 5) experiment design has been finalized with the following suites of experiments: I Decadal Hindcasts and Predictions simulations, II "long-term" simulations, III "atmosphere-only" (prescribed SST) simulations for especially computationally-demanding models. The new ESGF peer-to-peer (P2P) enterprise system (http://pcmdi9.llnl.gov) is now the official site for CMIP5 model output. The old gateway (http://pcmdi3.llnl.gov) is deprecated and now shut down permanently.
Country
>>> --- !!!! Attention: Obviously the institute does not exist any more. The links do not work anymore. !!!! --- <<< Our center is devoted to: Collection, compilation, evaluation, and dissemination of scientific information required for fusion research, and Investigation of problems arising in the course of development of fusion research. There are atomic and molecular (A & M) numerical databases and bibliographic databases on plasma physics and atomic physics.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.