Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 296 result(s)
Country
The repository is no longer available <<<!!!<<< The Senate Commission on Oceanography planned and coordinated the activities of the DFG in the field of marine research from 1959 until 2017. Most notably, it advised on matters pertaining to the research vessels METEOR and (from 2006 onwards) MARIA S. MERIAN, which are co-funded by the DFG. The focus was on the review process and evaluation of proposed voyages for these two ships. The Expert Research Vessel Panel (GPF) appointed by the BMBF and DFG, which is responsible for the review process for proposed voyages for all global, oceanic and regional German research vessels within the framework of a joint procedure developed by the BMBF, DFG and HGF, was constituted on 7 March 2018 and thus took on this task concerning METEOR and MARIA S. MERIAN from the Senate Commission on Oceanography. More information on the new review process can be found on the German Research Vessels Portal. https://www.portal-forschungsschiffe.de/index.php?index=53. >>>!!!>>>
The Bremen Core Repository - BCR, for International Ocean Discovery Program (IODP), Integrated Ocean Discovery Program (IODP), Ocean Drilling Program (ODP), and Deep Sea Drilling Project (DSDP) cores from the Atlantic Ocean, Mediterranean and Black Seas and Arctic Ocean is operated at University of Bremen within the framework of the German participation in IODP. It is one of three IODP repositories (beside Gulf Coast Repository (GCR) in College Station, TX, and Kochi Core Center (KCC), Japan). One of the scientific goals of IODP is to research the deep biosphere and the subseafloor ocean. IODP has deep-frozen microbiological samples from the subseafloor available for interested researchers and will continue to collect and preserve geomicrobiology samples for future research.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
The British Geological Survey (BGS), the world’s oldest national geological survey, has over 400 datasets including environmental monitoring data, digital databases, physical collections (borehole core, rocks, minerals and fossils), records and archives.
Central data management of the USGS for water data that provides access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa and the Commonwealth of the Northern Mariana Islands. Includes data on water use and quality, groundwater, and surface water.
!!! December 2015: The All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC) has closed down WDC – Rockets, Satellites and Earth Rotation (WDC – RSER) since the topics are no longer its priorities. However, the WDS-SC is extremely pleased to learn that the data holdings of WDC – RSER have now become part of the collection of WDC – Meteorology, Obninsk (WDS Regular Member)!!! The World Data Centre for Rockets, Satellite and Rotation of the Earth is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. Data are available from RIHMI-WDC site
>>>!!!<<<The IGETS data base at GFZ Potsdam http://www.re3data.org/repository/r3d100010300 continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of gravimeters, tiltmeters, strainmeters and other geodynamic sensors. >>>!!!<<< The ICET Data Bank contains results from 360 tidal gravity stations: hourly values, main tidal waves obtained by least squares analyses, residual vectors, oceanic attraction and loading vectors. The Data Bank contains also data from tiltmeters and extensometers. ICET is responsible for the Information System and Data Center of the Global Geodynamic Project (GGP). The tasks ascribed to ICET are : to collect all available measurements of Earth tides (which is its task as World Data Centre C), to evaluate these data by convenient methods of analysis in order to reduce the very large amount of measurements to a limited number of parameters which should contain all the desired and needed geophysical information, to compare the data from different instruments and different stations distributed all over the world, evaluate their precision and accuracy from the point of view of internal errors as well as external errors, to help to solve the basic problem of calibrations and to organize reference stations or build reference calibration devices, to fill gaps in information or data as far as feasible, to build a data bank allowing immediate and easy comparison of Earth tide parameters with different Earth models and other geodetical and geophysical parameters like geographical position, Bouguer anomaly, crustal thickness and age, heat flow, ... to ensure a broad diffusion of the results and information to all interested laboratories and individual scientists.
The European Environment Agency (EEA) is an agency of the European Union. Our task is to provide sound, independent information on the environment. We are a major information source for those involved in developing, adopting, implementing and evaluating environmental policy, and also the general public. Currently, the EEA has 33 member countries. EEA's mandate is: To help the Community and member countries make informed decisions about improving the environment, integrating environmental considerations into economic policies and moving towards sustainability To coordinate the European environment information and observation network (Eionet)
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The Analytical Geomagnetic Data Center of the Trans-Regional INTERMAGNET Segment is operated by the Geophysical Center of the Russian Academy of Sciences (GC RAS). Geomagnetic data are transmitted from observatories and stations located in Russia and near-abroad countries. The Center also provides access to spaceborne data products. The MAGNUS hardware-software system underlies the operation of the Center. Its particular feature is the automated real-time recognition of artificial (anthropogenic) disturbances in incoming data. Being based on fuzzy logic approach, this quality control service facilitates the preparation of the definitive magnetograms from preliminary records carried out by data experts manually. The MAGNUS system also performs on-the-fly multi-criteria estimation of geomagnetic activity using several indicators and provides online tools for modeling electromagnetic parameters in the near-Earth space. The collected geomagnetic data are stored using relational database management system. The geomagnetic database is intended for storing both 1-minute and 1-second data. The results of anthropogenic and natural disturbance recognition are also stored in the database.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Country
Volare is the repository of the Vorarlberger Landesbibliothek (Vorarlberg State Library). Digital Objects are made end-user-friendly available and they are secured in a long term. Pupils, students, patrimonial researchers but also the general public can use the imagery for various purposes. Volare facilitates access to regional, social and cultural history research. Volare encourages those who rediscover their native place or their holiday desination or just generally want to browse in the past.
The Antarctic Research Facility is a national repository for geological materials collected in polar regions. The Facility houses the largest such Southern Ocean collection in the world. These materials have been acquired from over 90 USAP research vessel cruises.
Country
The Canadian Disaster Database (CDD) contains detailed disaster information on more than 1000 natural, technological and conflict events (excluding war) that have happened since 1900 at home or abroad and that have directly affected Canadians. Message since 2022-01: The Canadian Disaster Database geospatial view is temporarily out of service. We apologize for the inconvenience. The standard view of the database is still available.
Country
CCCma has developed a number of climate models. These are used to study climate change and variability, and to understand the various processes which govern the climate system. They are also used to make quantitative projections of future long-term climate change (given various greenhouse gas and aerosol forcing scenarios), and increasingly to make initialized climate predictions on time scales ranging from seasons to decades. A brief description of these models and their corresponding references can be found: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis/models.html
Country
The Database for Hydrological Time Series of Inland Waters (DAHITI) was developed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) in 2013. DAHITI provides water level time series of lakes, reservoirs, rivers, and wetlands derived from multi-mission satellite altimetry for hydrological applications. All water level time series are free available for the user community after a short registration process.
MODES focuses on the representation of the inertio-gravity circulation in numerical weather prediction models, reanalyses, ensemble prediction systems and climate simulations. The project methodology relies on the decomposition of global circulation in terms of 3D orthogonal normal-mode functions. It allows quantification of the role of inertio-gravity waves in atmospheric varibility across the whole spectrum of resolved spatial and temporal scales. MODES is compiled by using gfortran although other options have been succesfully tested. The application requires the use of the netcdf and (optionally) grib-api libraries.
Country
The CCDS is an interface for distributing climate change information. The goals of CCDS are to: Support climate change impact and adaptation research in Canada and other countries; Support stakeholders requiring scenario information for decision making and policy development. Provide access to Canadian research on the development of scenarios and adaptation research.