Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 31 result(s)
!!! >>> intrepidbio.com expired <<< !!!! Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
The Genomic Observatories Meta-Database (GEOME) is a web-based database that captures the who, what, where, and when of biological samples and associated genetic sequences. GEOME helps users with the following goals: ensure the metadata from your biological samples is findable, accessible, interoperable, and reusable; improve the quality of your data and comply with global data standards; and integrate with R, ease publication to NCBI's sequence read archive, and work with an associated LIMS. The initial use case for GEOME came from the Diversity of the Indo-Pacific Network (DIPnet) resource.
Country
GSA is a data repository specialized for archiving raw sequence reads. It supports data generated from a variety of sequencing platforms ranging from Sanger sequencing machines to single-cell sequencing machines and provides data storing and sharing services free of charge for worldwide scientific communities. In addition to raw sequencing data, GSA also accommodates secondary analyzed files in acceptable formats (like BAM, VCF). Its user-friendly web interfaces simplify data entry and submitted data are roughly organized as two parts, viz., Metadata and File, where the former can be further assorted into BioProject, BioSample, Experiment and Run, and the latter contains raw sequence reads.
Country
SILVA is a comprehensive, quality-controlled web resource for up-to-date aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains alongside supplementary online services. In addition to data products, SILVA provides various online tools such as alignment and classification, phylogenetic tree calculation and viewer, probe/primer matching, and an amplicon analysis pipeline. With every full release a curated guide tree is provided that contains the latest taxonomy and nomenclature based on multiple references. SILVA is an ELIXIR Core Data Resource.
<<<!!!<<< This repository is no longer available>>>!!!>>>. Although the web pages are no longer available, you will still be able to download the final UniGene builds as static content from the FTP site https://ftp.ncbi.nlm.nih.gov/repository/UniGene/. You will also be able to match UniGene cluster numbers to Gene records by searching Gene with UniGene cluster numbers. For best results, restrict to the “UniGene Cluster Number” field rather than all fields in Gene. For example, a search with Mm.2108[UniGene Cluster Number] finds the mouse transthyretin Gene record (Ttr). You can use the advanced search page https://www.ncbi.nlm.nih.gov/gene/advanced to help construct these searches. Keep in mind that the Gene record contains selected Reference Sequences and GenBank mRNA sequences rather than the larger set of expressed sequences in the UniGene cluster.
Content type(s)
Country
The Centre for Applied Genomics hosts a variety of databases related to ongoing supported projects. Curation of these databases is performed in-house by TCAG Bioinformatics staff. The Autism Chromosome Rearrangement Database, The Cystic Fibrosis Mutation Database, TThe Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database are included. Large Scale Genomics Research resources include, the Database of Genomic Variants, The Chromosome 7 Annotation Project, The Human Genome Segmental Duplication Database, and the Non-Human Segmental Duplication Database
>>>!!!<<< Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org >>>!!!<<<
Country
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), advances life & health sciences by providing open access to a suite of resources, with the aim to translate big data into big discoveries and support worldwide activities in both academia and industry.
<<<!!!<<< This repository is no longer available. >>>!!!>>> The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
Country
From 2005 to 2008, with the support of the Ministry of Science and Technology (MOST), the construction of parasite germplasm repositories has spread to 20 conservation institutions in 15 provinces (cities) nationwide, with 3 physical exhibition halls; 3 live parasite conservation centers. A total of 1115 species/117814 pieces of parasitic germplasm resources of 23 orders in 11 phyla have been integrated into the physical library and database, including human parasites and vectors, animal parasites, plant nematodes, medical insects, trematodes, and parasitic snails, and the resources are combined with moderate distribution, medium- and long-term support, and off-site duplicates. The number of resources accounts for 39.27% of the national total. Through 10 years of accumulation, we have built the largest and only parasite species resource database in the field of parasites in China, and created a sharing platform of parasite germplasm resource center.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.