Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 24 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α (Lya) emitting galaxies with redshifts 2.9≲z≲6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δz≃0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available at the website.
Country
IDOC-DATA is a department of IDOC IDOC (Integrated Data & Operation Center) has existed since 2003 as a satellite operations center and data center for the Institute of Space Astrophysics (IAS) in Orsay, France. Since then, it has operated within the OSUPS (Observatoire des Sciences de l'Univers de l'Université Paris-Saclay - first french university in shanghai ranking), which includes three institutes: IAS, AIM (Astrophysique, Interprétation, Modélisation - IRFU, CEA) and GEOPS (Geosciences Paris-Saclay) . IDOC participates in the space missions of OSUPS and its partners, from mission design to long-term scientific data archiving. For each phase of the missions, IDOC offers three kinds of services in the scientific themes of OSUPS and therefore IDOC's activities are divided into three departments: IDOC-INSTR: instrument design and testing, IDOC-OPE: instrument operations, IDOC-DATA: data management and data value chain: to produce the different levels of data constructed from observations of these instruments and make them available to users for ergonomic and efficient scientific interpretation (IDOC-DATA). It includes the responsibility: - To build access to these datasets. - To offer the corresponding services such as catalogue management, visualization tools, software pipeline automation, etc. - To preserve the availability and reliability of this hardware and software infrastructure, its confidentiality where applicable and its security.
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
The University of Cape Town (UCT) uses Figshare for institutions for their data repository, which was launched in 2017 and is called ZivaHub: Open Data UCT. ZivaHub serves principal investigators at the University of Cape Town who are in need of a repository to store and openly disseminate the data that support their published research findings. The repository service is provided in terms of the UCT Research Data Management Policy. It provides open access to supplementary research data files and links to their respective scholarly publications (e.g. theses, dissertations, papers et al) hosted on other platforms, such as OpenUCT.
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
The Space Physics Data Facility (SPDF) leads in the design and implementation of unique multi-mission and multi-disciplinary data services and software to strategically advance NASA's solar-terrestrial program, to extend our science understanding of the structure, physics and dynamics of the Heliosphere of our Sun and to support the science missions of NASA's Heliophysics Great Observatory. Major SPDF efforts include multi-mission data services such as Heliophysics Data Portal (formerly VSPO), CDAWeb and CDAWeb Inside IDL,and OMNIWeb Plus (including COHOWeb, ATMOWeb, HelioWeb and CGM) , science planning and orbit services such as SSCWeb, data tools such as the CDF software and tools, and a range of other science and technology research efforts. The staff supporting SPDF includes scientists and information technology experts.
Country
Strasbourg astronomical Data Center (CDS) is dedicated to the collection and worldwide distribution of astronomical data and related information. Alongside data curation and service maintenance responsibilities, the CDS undertakes R&D activities that are fundamental to ensure the long term sustainability in a domain in which technology evolves very quickly. R&D areas include informatics, big data, and development of the astronomical Virtual Observatory (VO). CDS is a major actor in the VO with leading roles in European VO projects, the French Virtual Observatory and the International Virtual Observatory Alliance (IVOA). The CDS hosts the SIMBAD astronomical database, the world reference database for the identification of astronomical objects; VizieR, the catalogue service for the CDS reference collection of astronomical catalogues and tables published in academic journals; and the Aladin interactive software sky atlas for access, visualization and analysis of astronomical images, surveys, catalogues, databases and related data.
The Harvard Dataverse is open to all scientific data from all disciplines worldwide. It includes the world's largest collection of social science research data. It is hosting data for projects, archives, researchers, journals, organizations, and institutions.
The Australian National University undertake work to collect and publish metadata about research data held by ANU, and in the case of four discipline areas, Earth Sciences, Astronomy, Phenomics and Digital Humanities to develop pipelines and tools to enable the publication of research data using a common and repeatable approach. Aims and outcomes: To identify and describe research data held at ANU, to develop a consistent approach to the publication of metadata on the University's data holdings: Identification and curation of significant orphan data sets that might otherwise be lost or inadvertently destroyed, to develop a culture of data data sharing and data re-use.
Country
The TRR170-DB was set up to manage data products of the collaborative research center TRR 170 'Late Accretion onto Terrestrial Planets' (https://www.trr170-lateaccretion.de/). However, meanwhile the repository also stores data by other institutions and researchers. Data include laboratory and other instrumental data on planetary samples, remote sensing data, geological maps and model simulations.
Earthdata powered by EOSDIS (Earth Observing System Data and Information System) is a key core capability in NASA’s Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA’s Earth science data from various sources – satellites, aircraft, field measurements, and various other programs. EOSDIS uses the metadata and service discovery tool Earthdata Search https://search.earthdata.nasa.gov/search. The capabilities of EOSDIS constituting the EOSDIS Science Operations are managed by NASA's Earth Science Data and Information System (ESDIS) Project. The capabilities include: generation of higher level (Level 1-4) science data products for several satellite missions; archiving and distribution of data products from Earth observation satellite missions, as well as aircraft and field measurement campaigns. The EOSDIS science operations are performed within a distributed system of many interconnected nodes - Science Investigator-led Processing Systems (SIPS), and distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs) with specific responsibilities for production, archiving, and distribution of Earth science data products. The DAACs serve a large and diverse user community by providing capabilities to search and access science data products and specialized services.
Ever growing search and retrieval site for a comprehensive set of Heliophysics data from NASA and other spacecraft and ground-based observatories.
The WDC is concerned with the collection, management, distribution and utilization of data from Chinese provinces, autonomous regions and counties,including: Resource data:management,distribution and utlilzation of land, water, climate, forest, grassland, minerals, energy, etc. Environmental data:pollution,environmental quality, change, natural disasters,soli erosion, etc. Biological resources:animals, plants,wildlife Social economy:agriculture, industry, transport, commerce,infrastructure,etc. Population and labor Geographic background data on scales of 1:4M,1:1M, 1:(1/2)M, 1:2500, etc.
The Astromaterials Data System (AstroMat) is a data infrastructure to store, curate, and provide access to laboratory data acquired on samples curated in the Astromaterials Collection of the Johnson Space Center. AstroMat is developed and operated at the Lamont-Doherty Earth Observatory of Columbia University and funded by NASA.
The Astronomy data repository at Harvard is currently open to all scientific data from astronomical institutions worldwide. Incorporating Astroinformatics of galaxies and quasars Dataverse. The Astronomy Dataverse is connected to the indexing services provided by the SAO/NASA Astrophysical Data Service (ADS).
Country
Paris Astronomical Data Centre aims at providing VO access to its data collections, at participating to international standards developments, at implementing VO compliant simulation codes, data visualization and analysis software. This centre hosts high level permanent activities for tools and data distribution under the format of reference services. These sustainable services are recognized at the national level as CNRS labeled services. The various activities are organised as portals whose functions are to provide visibility and information on the projects and to encourage collaboration.
The U.S. Antarctic Program Data Center (USAP-DC) provides the central Project Catalog for projects funded by the NSF for the U.S. Antarctic Program and Data Repository for multi-disciplinary investigator research datasets derived from these projects. Services provided support investigators in documenting, preserving, and disseminating their research results. All data are openly accessible to the international community for browse, search, and data download. Datasets are registered in the Antarctic Master Directory to comply with the Antarctic Treaty.
Launched in December 2013, Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of stars in the Milky Way, it will answer questions about the origin and evolution of our home galaxy. The first data release (2016) contains three-dimensional positions and two-dimensional motions of a subset of two million stars. The second data release (2018) increases that number to over 1.6 Billion. Gaia’s measurements are as precise as planned, paving the way to a better understanding of our galaxy and its neighborhood. The AIP hosts the Gaia data as one of the external data centers along with the main Gaia archive maintained by ESAC and provides access to the Gaia data releases as part of Gaia Data Processing and Analysis Consortium (DPAC).