Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 119 result(s)
Surface air temperature change is a primary measure of global climate change. The GISTEMP project started in the late 1970s to provide an estimate of the changing global surface air temperature which could be compared with the estimates obtained from climate models simulating the effect of changes in atmospheric carbon dioxide, volcanic aerosols, and solar irradiance. The continuing analysis updates global temperature change from the late 1800s to the present.
Country
This data repository provides access to tropopause parameters estimated from meteorological reanalyses. The tropopause data sets provided on this web site have been created using meteorological reanalyses distributed by the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the National Centers for Atmospheric Prediction (NCEP). Currently, the repository covers ERA-Interim, MERRA-2, and the NCEP/NCAR Reanalysis 1 for the time period from 2000 to 2018 and ERA5 from 2009 to 2018. The tropopause data files provide geopotential height, pressure, temperature, and water vapor volume mixing ratio for the WMO 1st and 2nd tropopause, the cold point, and the dynamical tropopause.
Country
Data Publication Server Forschungszentrum Juelich is a web server for providing large data sets to the general public. It's main application is publishing data belonging to scientific publications.
WDC for Meteorology, Asheville acquires, catalogues, and archives data and makes them available to requesters in the international scientific community. Data are exchanged with counterparts, WDC for Meteorology, Obninsk and WDC for Meteorology, Beijing as necessary to improve access. Special research data sets prepared under international programs such as the IGY, World Climate Program (WCP), Global Atmospheric Research Program (GARP), etc., are archived and made available to the research community. All data and special data sets contributed to the WDC are available to scientific investigators without restriction. Data are available from 1755 to 2015.
The Data Center at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC), is responsible for the access, maintenance and distribution of real-time and archive weather satellite data.
>>>>!!!<<<<As of March 28, 2016, the 'NSF Arctic Data Center' will serve as the current repository for NSF-funded Arctic data. The ACADIS Gateway http://www.aoncadis.org is no longer accepting data submissions. All data and metadata in the ACADIS system have been transferred to the NSF Arctic Data Center system. There is no need for you to resubmit existing data. >>>>!!!<<<< ACADIS is a repository for Arctic research data to provide data archival, preservation and access for all projects funded by NSF's Arctic Science Program (ARC). Data include long-term observational timeseries, local, regional, and system-scale research from many diverse domains. The Advanced Cooperative Arctic Data and Information Service (ACADIS) program includes data management services.
Content type(s)
The International Space Environment Service (ISES) is a collaborative network of space weather service-providing organizations around the globe. Our mission is to improve, to coordinate, and to deliver operational space weather services. ISES is organized and operated for the benefit of the international space weather user community.
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts – which were formerly sent based only on event magnitude and location, or population exposure to shaking – now will also be generated based on the estimated range of fatalities and economic losses. PAGER uses these earthquake parameters to calculate estimates of ground shaking by using the methodology and software developed for ShakeMaps. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
The Precipitation Processing System (PPS) evolved from the Tropical Rainfall Measuring Mission (TRMM) Science Data and Information System (TSDIS). The purpose of the PPS is to process, analyze and archive data from the Global Precipitation Measurement (GPM) mission, partner satellites and the TRMM mission. The PPS also supports TRMM by providing validation products from TRMM ground radar sites. All GPM, TRMM and Partner public data products are available to the science community and the general public from the TRMM/GPM FTP Data Archive. Please note that you need to register to be able to access this data. Registered users can also search for GPM, partner and TRMM data, order custom subsets and set up subscriptions using our PPS Data Products Ordering Interface (STORM)
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
The National Earth Observation Science Data Center, whose predecessor was the National Integrated Earth Observation Data Sharing Platform, has formed a sustainable, cross-agency, one-stop data sharing service capability after years of construction, and it is also the main channel for international exchange of remote sensing data in China. In the future, it will manage and coordinate scientific data resources in the field of earth observation on behalf of the country, and build a national-level earth observation big data infrastructure. Coordinate various industry data centers, scientific research institutions and enterprises in the field of Earth observation in China to cooperate in building a national strategic, fundamental, scientific, internationalized, and independent and controllable scientific big data environment in the field of Earth observation. On the basis of the already formed data ecology and cooperation mechanism, data sharing services, and international data cooperation, we will actively expand to the whole life cycle management of data and carry out data management work such as the collection, management, analysis and mining, and sharing services of national scientific data resources for Earth observation. Form a unified technical support system and data sharing service environment for Earth observation data in China. Maintain and enhance its international influence and become a domestic and international first-class scientific data center for Earth observation!
Country
coastMap offers campaign data, model analysis and thematic maps predominantly in the Biogeosciences. Spotlights explain in a nutshell important topics of the research conducted for the interested public. The portal offers applications to visualise and download field and laboratory work and to connect the information with interactive maps. Filter functions allow the user to search for general topics like a marine field of interest or single criteria, for example a specific ship campaign or one of 1000 measured parameters.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
The WHOI Ship DataGrabber system provides the oceanographic community on-line access to underway ship data collected on the R/V Atlantis, Knorr, Oceanus, and Tioga (TBD). All the shipboard data is co-registered with the ship's GPS time and navigation systems.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling techniques and are available at multiple spatial/temporal resolutions, covering the period from 1895 to the present. Whenever possible, we offer these datasets to the public, either free of charge or for a fee (depending on dataset size/complexity and funding available for the activity).
Scripps Institute of Oceanography (SIO) Explorer includes five federated collections: SIO Cruises, SIO Historic Photographs, the Seamounts, Marine Geological Samples, and the Educator’s Collection, all part of the US National Science Digital Library (NSDL). Each collection represents a unique resource of irreplaceable scientific research. The effort is collaboration among researchers at Scripps, computer scientists from the San Diego Supercomputer Center (SDSC), and archivists and librarians from the UCSD Libraries. In 2005 SIOExplorer was extended to the Woods Hole Oceanographic Institution with the Multi-Institution Scalable Digital Archiving project, funded through the joint NSF/Library of Congress digital archiving and preservation program, creating a harvesting methodology and a prototype collection of cruises, Alvin submersible dives and Jason ROV lowerings.
CDAAC is responsible for processing the science data received from COSMIC. This data is currently being processed not long after the data is received, i.e. approximately eighty percent of radio occultation profiles are delivered to operational weather centers within 3 hours of observation as well as in a more accurate post-processed mode (within 8 weeks of observation).
The Environmental Change Network is the UK’s long-term environmental monitoring and research (LTER) programme. We make regular measurements of plant and animal communities and their physical and chemical environment. Our long-term datasets are used to increase understanding of the effects of climate change, air pollution and other environmental pressures on UK ecosystems.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
The TropFlux provides surface heat and momentum flux data of tropical oceans (30°N-30°S) between January 1979 and September 2011. The TropFlux data is produced under a collaboration between Laboratoire d’Océanographie: Expérimentation et Approches Numériques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India), and supported by Institut de Recherche pour le Développement (IRD, France). TropFlux relies on data provided by the ECMWF Re-Analysis interim (ERA-I) and ISCCP projects. Since 2014 located at Indian National Centre for Ocean Information Services.