Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 52 result(s)
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
Country
Covalent DNA modifications have been found in numerous organisms and more are continually being discovered and characterized, as detection methods improve. Many of these modifications can affect the conformation of the DNA double helix, often resulting in downstream effects upon transcription factor binding. Some of these modifications have been demonstrated to be stable, while others are viewed as merely transient. DNAmod catalogues information on known DNA modifications, of which the well-known 5-methylcytosine is only one. It aims to profile modifications' properties, building upon data contained within the Chemical Entities of Biological Interest (ChEBI) database. It also provides literature citations and includes curated annotations on mapping techniques and natural occurrence information.
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with comprehensive information o­n the approximately 700 prokaryote species that are present in the human oral cavity. Approximately 49% are officially named, 17% unnamed (but cultivated) and 34% are known o­nly as uncultivated phylotypes. The HOMD presents a provisional naming scheme for the currently unnamed species so that strain, clone, and probe data from any laboratory can be directly linked to a stably named reference scheme. The HOMD links sequence data with phenotypic, phylogenetic, clinical, and bibliographic information. Genome sequences for oral bacteria determined as part of this project, the Human Microbiome Project, and other sequencing projects are being added to the HOMD as they become available. Genomes for 315 oral taxa (46% of taxa o­n HOMD) are currently available o­n HOMD. The HOMD site offers easy to use tools for viewing all publically available oral bacterial genomes.
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
GeneWeaver combines cross-species data and gene entity integration, scalable hierarchical analysis of user data with a community-built and curated data archive of gene sets and gene networks, and tools for data driven comparison of user-defined biological, behavioral and disease concepts. Gene Weaver allows users to integrate gene sets across species, tissue and experimental platform. It differs from conventional gene set over-representation analysis tools in that it allows users to evaluate intersections among all combinations of a collection of gene sets, including, but not limited to annotations to controlled vocabularies. There are numerous applications of this approach. Sets can be stored, shared and compared privately, among user defined groups of investigators, and across all users.
Country
>>>!!!<<< OMICtools is no longer online >>>!!!<<< We founded OMICtools in 2012 with the vision to drive progress in life science. We wanted to empower life science practitioners all over the world to achieve breakthroughs by getting data to talk. While we made tremendous progress over the past three years, developing a bioinformatics database of software and dynamic protocols, attracting more than 1.5M visitors a year, we lacked the financial support we needed to continue. We certainly gave it our all. We'd like to thank everyone who believed in us and supported us on this journey: all our users, our community, our friends, families and employees (who we consider as our extended family!). omicX will probably shut down its operations within the next few weeks. The team and I remain firmly committed to our vision, particularly at this very difficult time. It is now, more than ever before, that researchers need access to a resource that pools collective scientific intelligence. We have accumulated an awful lot of experience which we are keen to share. If your institution would be interested in taking over our website and database, to provide researchers with continued access to the platform, or you simply want to stay in touch with the omicX team, contact us at contact@omictools.com or at carine.toutain@fhbx.eu.
>>>!!!<<< Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org >>>!!!<<<
Country
The JenAge Ageing Factor Database AgeFactDB is aimed at the collection and integration of ageing phenotype and lifespan data. Ageing factors are genes, chemical compounds or other factors such as dietary restriction, for example. In a first step ageing-related data are primarily taken from existing databases. In addition, new ageing-related information is included both by manual and automatic information extraction from the scientific literature. Based on a homology analysis, AgeFactDB also includes genes that are homologous to known ageing-related genes. These homologs are considered as candidate or putative ageing-related genes.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
The Fragile Families and Child Wellbeing Study changed its name to The Future of Families and Child Wellbeing Study (FFCWS). Note that all documentation issued prior to January 2023 contains the study’s former name. Any further reference to FFCWS should kindly observe this name change. The Fragile Families & Child Wellbeing Study is following a cohort of nearly 5,000 children born in large U.S. cities between 1998 and 2000 (roughly three-quarters of whom were born to unmarried parents). We refer to unmarried parents and their children as “fragile families” to underscore that they are families and that they are at greater risk of breaking up and living in poverty than more traditional families. The core Study was originally designed to primarily address four questions of great interest to researchers and policy makers: (1) What are the conditions and capabilities of unmarried parents, especially fathers?; (2) What is the nature of the relationships between unmarried parents?; (3) How do children born into these families fare?; and (4) How do policies and environmental conditions affect families and children?
Country
Stemformatics is a collaboration between the stem cell and bioinformatics community. We were motivated by the plethora of exciting cell models in the public and private domains, and the realisation that for many biologists these were mostly inaccessible. We wanted a fast way to find and visualise interesting genes in these exemplar stem cell datasets. We'd like you to explore. You'll find data from leading stem cell laboratories in a format that is easy to search, easy to visualise and easy to export.
The Cancer Cell Line Encyclopedia project is a collaboration between the Broad Institute, and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models, to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. The CCLE provides public access to genomic data, analysis and visualization for about 1000 cell lines.
<<<!!!<<< OFFLINE >>>!!!>>> A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
Complete Genomics provides free public access to a variety of whole human genome data sets generated from Complete Genomics’ sequencing service. The research community can explore and familiarize themselves with the quality of these data sets, review the data formats provided from our sequencing service, and augment their own research with additional summaries of genomic variation across a panel of diverse individuals. The quality of these data sets is representative of what a customer can expect to receive for their own samples. This public genome repository comprises genome results from both our Standard Sequencing Service (69 standard, non-diseased samples) and the Cancer Sequencing Service (two matched tumor and normal sample pairs). In March 2013 Complete Genomics was acquired by BGI-Shenzhen , the world’s largest genomics services company. BGI is a company headquartered in Shenzhen, China that provides comprehensive sequencing and bioinformatics services for commercial science, medical, agricultural and environmental applications. Complete Genomics is now focused on building a new generation of high-throughput sequencing technology and developing new and exciting research, clinical and consumer applications.
!!! >>> intrepidbio.com expired <<< !!!! Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
<<<!!!<<< This repository is no longer available. >>>!!!>>> PATRIC will go offline by mid-December2022. Here is what you need to know. As announced previously, PATRIC, the bacterial BRC, and IRD / ViPR, the viral BRCs, are being merged into the new Bacterial and Viral Bioinformatics Resource Center (BV-BRC). BV-BRC combines the data, tools, and technologies from these BRCs to provide an integrated resource for bacterial and viral genomics-based infectious disease research.
Country
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies