Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
NED is a comprehensive database of multiwavelength data for extragalactic objects, providing a systematic, ongoing fusion of information integrated from hundreds of large sky surveys and tens of thousands of research publications. The contents and services span the entire observed spectrum from gamma rays through radio frequencies. As new observations are published, they are cross- identified or statistically associated with previous data and integrated into a unified database to simplify queries and retrieval. Seamless connectivity is also provided to data in NASA astrophysics mission archives (IRSA, HEASARC, MAST), to the astrophysics literature via ADS, and to other data centers around the world.
The Keck Observatory Archive (KOA)is a collaboration between the NASA Exoplanet Science Institute (NExScI) and the W. M. Keck Observatory (WMKO). This collaboration is founded by the NASA. KOA has been archiving data from the High Resolution Echelle Spectrograph (HIRES) since August 2004 and data acquired with the Near InfraRed echelle SPECtrograph (NIRSPEC) since May 2010. The archived data extend back to 1994 for HIRES and 1999 for NIRSPEC. The W. M. Keck Observatory Archive (KOA) ingests and curates data from the following instruments: DEIMOS, ESI, HIRES, KI, LRIS, MOSFIRE, NIRC2, and NIRSPEC.
Herschel has been designed to observe the `cool universe'; it is observing the structure formation in the early universe, resolving the far infrared cosmic background, revealing cosmologically evolving AGN/starburst symbiosis and galaxy evolution at the epochs when most stars in the universe were formed, unveiling the physics and chemistry of the interstellar medium and its molecular clouds, the wombs of the stars, and unravelling the mechanisms governing the formation of and evolution of stars and their planetary systems, including our own solar system, putting it into context. In short, Herschel is opening a new window to study how the universe has evolved to become the universe we see today, and how our star the sun, our planet the earth, and we ourselves fit in.
This is a compilation of approximately 923,000 allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.5 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition. No attempt has been made to include observed wavelengths. Most of the atomic energy level data have been taken from the Atomic Spectra Database provided by the National Institute of Standards and Technology (NIST).
The ADAS Project is a self-funding (i.e. funded by participants) project consisting of most major fusion laboratories along with other astrophysical and university groups. As an implementation, it is an interconnected set of computer codes and data collections for modelling the radiating properties of ions and atoms in plasmas. It can address plasmas ranging from the interstellar medium through the solar atmosphere and laboratory thermonuclear fusion devices to technological plasmas. ADAS assists in the analysis and interpretation of spectral emission and supports detailed plasma models.