Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 16 result(s)
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
The Brain Transcriptome Database (BrainTx) project aims to create an integrated platform to visualize and analyze our original transcriptome data and publicly accessible transcriptome data related to the genetics that underlie the development, function, and dysfunction stages and states of the brain.
Neuroimaging Tools and Resources Collaboratory (NITRC) is currently a free one-stop-shop environment for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, and computing power. Since its debut in 2007, NITRC has helped the neuroscience community to use software and data produced from research that, before NITRC, was routinely lost or disregarded, to make further discoveries. NITRC provides free access to data and enables pay-per-use cloud-based access to unlimited computing power, enabling worldwide scientific collaboration with minimal startup and cost. With NITRC and its components—the Resources Registry (NITRC-R), Image Repository (NITRC-IR), and Computational Environment (NITRC-CE)—a researcher can obtain pilot or proof-of-concept data to validate a hypothesis for a few dollars.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
<<<!!!<<<Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org>>>!!!>>>
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
EuPathDB (formerly ApiDB) is an integrated database covering the eukaryotic pathogens in the genera Acanthamoeba, Annacaliia, Babesia, Crithidia, Cryptosporidium, Edhazardia, Eimeria, Encephalitozoon, Endotrypanum, Entamoeba, Enterocytozoon, Giardia, Gregarina, Hamiltosporidium, Leishmania, Nematocida, Neospora, Nosema, Plasmodium, Theileria, Toxoplasma, Trichomonas, Trypanosoma and Vavraia, Vittaforma). While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all of these resources, and the opportunity to leverage orthology for searches across genera.
Country
<<<!!!<<< 2021-09-01: repository is offline >>>!!!<<< Background: Many studies have been conducted to detect quantitative trait loci (QTL) in dairy cattle. However, these studies are diverse in terms of their differing resource populations, marker maps, phenotypes, etc, and one of the challenges is to be able to synthesise this diverse information. This web page has been constructed to provide an accessible database of studies, providing a summary of each study, facilitating an easier comparison across studies. However, it also highlights the need for uniform reporting of results of studies, to facilitate more direct comparisons being made. Description: Studies recorded in this database include complete and partial genome scans, single chromosome scans, as well as fine mapping studies, and contain all known reports that were published in peer-reviewed journals and readily available conference proceedings, initially up to April 2005. However, this data base is being added to, as indicated by the last web update. Note that some duplication of results will occur, in that there may be a number of reports on the same resource population, but utilising different marker densities or different statistical methodologies. The traits recorded in this map are milk yield, milk composition (protein yield, protein %, fat yield, fat %), and somatic cell score (SCS).