Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected, modified and hosted a large amount of earth observation data for the majority of the UK, including imagery from ERS satellites, ENVISAT and ALOS, high-resolution Digital Elevation Models (DEMs) and Digital Terrain Models (DTMs) and aerial photography dating back to 1930. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. Aside from the thermal imagery data which stands alone, the data reside in four collections: optical, elevation, radar and feature.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
A planetary-scale platform for Earth science data & analysis. Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers, and developers use Earth Engine to detect changes, map trends, and quantify differences on the Earth's surface.
EUMETSAT's primary objective is to establish, maintain and exploit European systems of operational meteorological satellites. EUMETSAT is responsible for the launch and operation of the satellites and for delivering satellite data to end-users as well as contributing to the operational monitoring of climate and the detection of global climate changes. The EUMETSAT Product Navigator is the catalogue for all EUMETSAT data and products.
The Met Office is the UK's National Weather Service. We have a long history of weather forecasting and have been working in the area of climate change for more than two decades. As a world leader in providing weather and climate services, we employ more than 1,800 at 60 locations throughout the world. We are recognised as one of the world's most accurate forecasters, using more than 10 million weather observations a day, an advanced atmospheric model and a high performance supercomputer to create 3,000 tailored forecasts and briefings a day. These are delivered to a huge range of customers from the Government, to businesses, the general public, armed forces, and other organisations.
Country
The vision of the JaLTER is to provide scientific knowledge which contributes to conservation, advancement and sustainability of environment, ecosystem services, productivity and biodiversity for a society by conducting long-term and interdisciplinary research in ecological science including human dimensions. The JaLTER is closely linked with the International Long-Term Ecological Research Network (ILTER Network).
The Arctic Data Center is the primary data and software repository for the Arctic section of NSF Polar Programs. The Center helps the research community to reproducibly preserve and discover all products of NSF-funded research in the Arctic, including data, metadata, software, documents, and provenance that links these together. The repository is open to contributions from NSF Arctic investigators, and data are released under an open license (CC-BY, CC0, depending on the choice of the contributor). All science, engineering, and education research supported by the NSF Arctic research program are included, such as Natural Sciences (Geoscience, Earth Science, Oceanography, Ecology, Atmospheric Science, Biology, etc.) and Social Sciences (Archeology, Anthropology, Social Science, etc.). Key to the initiative is the partnership between NCEAS at UC Santa Barbara, DataONE, and NOAA’s NCEI, each of which bring critical capabilities to the Center. Infrastructure from the successful NSF-sponsored DataONE federation of data repositories enables data replication to NCEI, providing both offsite and institutional diversity that are critical to long term preservation.