Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 22 result(s)
Swiss Institute of Bioinformatics (SIB) coordinates research and education in bioinformatics throughout Switzerland and provides bioinformatics services to the national and international research community. ExPASy gives access to numerous repositories and databases of SIB. For example: array map, MetaNetX, SWISS-MODEL and World-2DPAGE, and many others see a list here http://www.expasy.org/resources
Country
>>>!!!<<< The repository is no longer available. >>>!!!<<< Indian Genetic Disease Database (IGDD) is an initiative of CSIR Indian Institute of Chemical Biology. It is supported by Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT) of India. The Indian people represent one-sixth of the world population and consists of a ethnically, geographically, and genetically diverse population. In some communities the ratio of genetic disorder is relatively high due to consanguineous marriage practiced in the community. This database has been created to keep track of mutations in the causal genes for genetic diseases common in India and help the physicians, geneticists, and other professionals retrieve and use the information for the benefit of the public. The database includes scientific information about these genetic diseases and disabilities, but also statistical information about these diseases in today's society. Data is categorized by body part affected and then by title of the disease.
Country
The RAMEDIS system is a platform independent, web-based information system for rare metabolic diseases based on filed case reports. It was developed in close cooperation with clinical partners to allow them to collect information on rare metabolic diseases with extensive details, e.g. about occurring symptoms, laboratory findings, therapy and molecular data.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
Country
The Human Genetic Variation Database (HGVD) aims to provide a central resource to archive and display Japanese genetic variation and association between the variation and transcription level of genes. The database currently contains genetic variations determined by exome sequencing of 1,208 individuals and genotyping data of common variations obtained from a cohort of 3,248 individuals.
The Brain Transcriptome Database (BrainTx) project aims to create an integrated platform to visualize and analyze our original transcriptome data and publicly accessible transcriptome data related to the genetics that underlie the development, function, and dysfunction stages and states of the brain.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
!!! >>> the repository is offline >>> !!! GOBASE is a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts. GOBASE is currently expanding to include information on representative bacteria that are thought to be specifically related to the bacterial ancestors of mitochondria and chloroplasts
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
The Growing Up Today Study is a collaborative study between clinicians, researchers, and thousands of participants across the US and beyond. The aim of this study is to gain a deeper understanding of the factors that affect health throughout life. Together we are working to building one of the most powerful resources for fighting cancer, obesity, heart disease, depression, and so much more.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
Content type(s)
CTD is a robust, publicly available database that aims to advance understanding about how environmental exposures affect human health. It provides manually curated information about chemical–gene/protein interactions, chemical–disease and gene–disease relationships. These data are integrated with functional and pathway data to aid in development of hypotheses about the mechanisms underlying environmentally influenced diseases. We also have additional ongoing projects involving manual curation of exposome data and chemical–phenotype relationships to help identify pre–disease biomarkers resulting from environmental exposures. The initial release of CTD was on November 12, 2004. We’re grateful to our strong community support and encourage you to give us feedback so we can continue to evolve with your research needs.
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
A curated database of mutations and polymorphisms associated with Lafora Progressive Myoclonus Epilepsy. The Lafora progressive myoclonus epilepsy mutation and polymorphism database is a collection of hand curated mutation and polymorphism data for the EPM2A and EPM2B (NHLRC1) from publicly available literature: databases and unpublished data. The database is continuously updated with information from in-house experimental data as well as data from published research studies.
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.
Country
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies
Country
Androgen Receptor Gene Mutations Database is for all who are interested in mutations of the Androgen Receptor Gene. In light of the difficulty in getting new AR mutations published the curator will now accept new mutations that have not been published, provided that it is from a reputable research or clinical laboratory. The curator also strongly suggests that where possible, particularly in the case of new unique mutations that an attempt be made to at least confirm the pathogenicity of the putatative mutation, by showing that the mutation when transfected into a suitable expression system produces a mutant androgen receptor protein.