Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 39 result(s)
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
A database for plant breeders and researchers to combine, visualize, and interrogate the wealth of phenotype and genotype data generated by the Triticeae Coordinated Agricultural Project (TCAP).
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
PHI-base is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. PHI-base is therfore an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, PHI-base also includes antifungal compounds and their target genes.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
The KNB Data Repository is an international repository intended to facilitate ecological, environmental and earth science research in the broadest senses. For scientists, the KNB Data Repository is an efficient way to share, discover, access and interpret complex ecological, environmental, earth science, and sociological data and the software used to create and manage those data. Due to rich contextual information provided with data in the KNB, scientists are able to integrate and analyze data with less effort. The data originate from a highly-distributed set of field stations, laboratories, research sites, and individual researchers. The KNB supports rich, detailed metadata to promote data discovery as well as automated and manual integration of data into new projects. The KNB supports a rich set of modern repository services, including the ability to assign Digital Object Identifiers (DOIs) so data sets can be confidently referenced in any publication, the ability to track the versions of datasets as they evolve through time, and metadata to establish the provenance relationships between source and derived data.
Content type(s)
Since the first discovery of RNA pseudoknots more and many more pseudoknots have been found. However, not all of those pseudoknot data are easy to trace. Sometimes the information is hidden in a publication where the title gives no hint that pseudoknot information is there. This was the first reason that we thought that a general accessible information source for pseudoknots would be handy.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
Here you will find authoritative taxonomic information on plants, animals, fungi, and microbes of North America and the world.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Country
NODE (The National Omics Data Encyclopedia) provides an integrated, compatible, comparable, and scalable multi-omics resource platform that supports flexible data management and effective data release. NODE uses a hierarchical data architecture to support storage of muti-omics data including sequencing data, MS based proteomics data, MS or NMR based metabolomics data, and fluorescence imaging data. Launched in early 2017, NODE has collected and published over 900 terabytes of omics data for researchers from China and all over the world in last three years, 22% of which contains multiple omics data. NODE provides functions around the whole life cycle of omics data, from data archive, data requests/responses to data sharing, data analysis, data review and publish.