Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership based at the NASA Goddard Space Flight Center in Greenbelt, Maryland and a component of the National Space Weather Program. The CCMC provides, to the international research community, access to modern space science simulations. In addition, the CCMC supports the transition to space weather operations of modern space research models.
Country
The World Data Centre section provides software and data catalogue information and data produced by IPS Radio and Space Services over the past few past decades. You can download data files, plot graphs from data files, check data availability, retrieve data sets and station information.
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
Country
NSSDC is the nation-level space science data center which recognized by the Ministry of Science and Technology of China. As a repository for space science data, NSSDC assumes the responsibility of the long-term stewardship and offering a reliable service of space science data in China. It also has been the Chinese center for space science of the World Data Center (WDC) since 1988. In 2013, NSSDC became a regular member of World Data System. Data resources are concentrated in the following fields of space physics and space environment, space astronomy, lunar and planetary science, space application and engineering. In space physics, the NSSDC maintains space-based observation data and ground-based observation data of the middle and upper atmosphere, ionosphere and earth surface, from Geo-space Double Star Exploration Program and Meridian Project. In space astronomy, NSSDC archived pointed observation data of Hard X-ray Modulation Telescope. In lunar and planetary science, space application and engineering, NSSDC also collects detection data of Chang’E from Lunar Exploration Program and science products of BeiDou satellites.
The Data Center at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC), is responsible for the access, maintenance and distribution of real-time and archive weather satellite data.
Country
National Institute of Information and Communications Technology (NICT) has taken charge of the WDC for Ionosphere. WDC for Ionosphere archives ionospheric data and metadata from approximately 250 stations across the globe.
The Solar Dynamics Observatory (SDO) studies the solar atmosphere on small scales of space and time, in multiple wavelengths. This is a searchable database of all SDO data, including citizen scientist images, space weather and near real time data, and helioseismology data.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)