Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 43 result(s)
EUMETSAT's primary objective is to establish, maintain and exploit European systems of operational meteorological satellites. EUMETSAT is responsible for the launch and operation of the satellites and for delivering satellite data to end-users as well as contributing to the operational monitoring of climate and the detection of global climate changes. The EUMETSAT Product Navigator is the catalogue for all EUMETSAT data and products.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
The Web-enabled Landsat data (WELD) project combines geophysical and biophysical Landstat data for the purposes of long-term preservation and monitoring of national, regional, and local data. WELD products are already "terrain-corrected and radiometrically calibrated" so as to be more easily accessible to researchers.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
Country
DARTS primarily archives high-level data products obtained by JAXA's space science missions in astrophysics (X-rays, radio, infrared), solar physics, solar-terrestrial physics, and lunar and planetary science. In addition, we archive related space science data products obtained by other domestic or foreign institutes, and provide data services to facilitate use of these data.
The Earth Orientation Centre is responsible for monitoring of long-term earth orientation parameters, publications for time dissemination and leap second announcements.
The NSIDC Distributed Active Archive Center (DAAC) processes, archives, documents, and distributes data from NASA's past and current Earth Observing System (EOS) satellites and field measurement programs. The NSIDC DAAC focuses on the study of the cryosphere. The NSIDC DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) Data Centers.
NOAA's National Centers for Environmental Information (NCEI) are responsible for hosting and providing public access to one of the most significant archives for environmental data on Earth with over 20 petabytes of comprehensive atmospheric, coastal, oceanic, and geophysical data. NCEI headquarters are located in Asheville, North Carolina. Most employees work in the four main locations, but apart from those locations, NCEI has employees strategically located throughout the United States. The main locations are Cooperative Institute for Climate and Satellites–North Carolina (CICS-NC) at Asheville, North Carolina, Cooperative Institute for Research in Environmental Sciences (CIRES) at Boulder Colorado, Cooperative Institute for Climate and Satellites–Maryland (CICS-MD) at Silver Spring Maryland and Stennis Space Center, Mississippi.
The CAS Data Catalog contains a variety of atmospheric and oceanic energy budget calculations derived from satellites and Reanalysis products. The CAS Data Catalog has been archived in favor of the Climate Data Guide https://www.re3data.org/repository/r3d100012500. Please visit that website for your climate data needs and to view datasets from the CAS Data Catalog refer to the Climate Analysis Section (CAS) Data Catalog tag (https://climatedataguide.ucar.edu/collections/climate-analysis-section-cas-data-catalog) on the Climate Data Guide website.
Spitzer is the final mission in NASA's Great Observatories Program - a family of four orbiting observatories, each observing the Universe in a different kind of light (visible, gamma rays, X-rays, and infrared). Spitzer is also a part of NASA's Astronomical Search for Origins Program, designed to provide information which will help us understand our cosmic roots, and how galaxies, stars and planets develop and form.
Earth Resources Observation and Science (EROS) Center is a remotely sensed data management, systems development, and research field center for the U.S. Geological Survey's (USGS) Climate and Land Use Change Mission Area. The USGS is a bureau of the U.S. Department of the Interior. It currently houses one of the largest computer complexes in the Department of the Interior. EROS has approximately 600 government and contractor employees.
EDINA delivers online services and tools to benefit students, teachers and researchers in UK Higher and Further Education and beyond.
The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
Earthdata powered by EOSDIS (Earth Observing System Data and Information System) is a key core capability in NASA’s Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA’s Earth science data from various sources – satellites, aircraft, field measurements, and various other programs. EOSDIS uses the metadata and service discovery tool Earthdata Search https://search.earthdata.nasa.gov/search. The capabilities of EOSDIS constituting the EOSDIS Science Operations are managed by NASA's Earth Science Data and Information System (ESDIS) Project. The capabilities include: generation of higher level (Level 1-4) science data products for several satellite missions; archiving and distribution of data products from Earth observation satellite missions, as well as aircraft and field measurement campaigns. The EOSDIS science operations are performed within a distributed system of many interconnected nodes - Science Investigator-led Processing Systems (SIPS), and distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs) with specific responsibilities for production, archiving, and distribution of Earth science data products. The DAACs serve a large and diverse user community by providing capabilities to search and access science data products and specialized services.
NWS/NCEP/Climate Prediction Center delivers climate prediction, monitoring, and diagnostic products for timescales from weeks to years to the Nation and the global community for the protection of life and property and the enhancement of the economy. The goal of the CPC website is to provide easy and comprehensive access to data and products that serve our mission. We serve a broad audience ranging from government to non-government entities like academia, NGO’s, and the public and private sectors. Specific sectors include agriculture, energy, health, transportation, emergency managers, etc.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
The Norwegian Meteorological Institute supplies climate observations and weather data and forecasts for the country and surrounding waters (including the Arctic). In addition commercial services are provided to fit customers requirements. Data are served through a number of subsystems (information provided in repository link) and cover data from internal services of the institute, from external services operated by the institute and research projects where the institute participates. Further information is provided in the landing page which also contains entry points some of the data portals operated.
Country
The Coriolis Data Centre handles operational oceanography measurements made in situ, complementing the measurement of the ocean surface made using instruments aboard satellites. This work is realised through the establishment of permanent networks with data collected by ships or autonomous systems that are either fixed or drifting. This data can be used to construct a snapshot of water mass structure and current intensity.
The Crustal Dynamics Data Information System (CDDIS) was initially developed to provide a central data bank for NASA's Crustal Dynamics Project (CDP). The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank, to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to NASA investigators and cooperating institutions.