Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 54 result(s)
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
!!! December 2015: The All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC) has closed down WDC – Rockets, Satellites and Earth Rotation (WDC – RSER) since the topics are no longer its priorities. However, the WDS-SC is extremely pleased to learn that the data holdings of WDC – RSER have now become part of the collection of WDC – Meteorology, Obninsk (WDS Regular Member)!!! The World Data Centre for Rockets, Satellite and Rotation of the Earth is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. Data are available from RIHMI-WDC site
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
RESA is currently moving to the CODE-DE platform. Access to the archived RESA data is therefore currently not possible. The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).
The World Data Centre for Meteorology is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. The information basis of the Centre is updated on regular basis from various sources including the bilateral data exchange with the World Data Centre for Meteorology in Ashville, North Carolina, USA. The data holdings of WDC – Rockets, Satellites and Earth Rotation (WDC RSER) have become, in December 2015, part of the collection of WDC – Meteorology, Obninsk
The Web-enabled Landsat data (WELD) project combines geophysical and biophysical Landstat data for the purposes of long-term preservation and monitoring of national, regional, and local data. WELD products are already "terrain-corrected and radiometrically calibrated" so as to be more easily accessible to researchers.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
DARTS primarily archives high-level data products obtained by JAXA's space science missions in astrophysics (X-rays, radio, infrared), solar physics, solar-terrestrial physics, and lunar and planetary science. In addition, we archive related space science data products obtained by other domestic or foreign institutes, and provide data services to facilitate use of these data.
The CAS Data Catalog contains a variety of atmospheric and oceanic energy budget calculations derived from satellites and Reanalysis products.
NOAA's National Centers for Environmental Information (NCEI) are responsible for hosting and providing public access to one of the most significant archives for environmental data on Earth with over 20 petabytes of comprehensive atmospheric, coastal, oceanic, and geophysical data. NCEI headquarters are located in Asheville, North Carolina. Most employees work in the four main locations, but apart from those locations, NCEI has employees strategically located throughout the United States. The main locations are Cooperative Institute for Climate and Satellites–North Carolina (CICS-NC) at Asheville, North Carolina, Cooperative Institute for Research in Environmental Sciences (CIRES) at Boulder Colorado, Cooperative Institute for Climate and Satellites–Maryland (CICS-MD) at Silver Spring Maryland and Stennis Space Center, Mississippi.
The CSSDP project provides space scientists with access to a wide range of space data, observations, and investigative tools. It provides a seamless, single- point of access to these resources through a custom web portal. To date, more than 350 scientists are registered users of the CSSDP portal. The project integrates data from sources such as the Canadian Geospace Monitoring Program and anticipates serving data from the NASA THEMIS satellite probes, the Canadian High-Artic Ionospheric Network (CHAIN), and the Alberta- based Enhanced Polar Outflow Probe (ePOP) satellite mission. This collection and presentation of space data is used to study the influence of the sun on near- Earth space environment, including phenomena such as geomagnetic storms, which cause the northern and southern lights. Geomagnetic storms are also known for often causing power outages, disturbances in polar communications, and the failure of satellites. The effects of space weather can also cause transpolar flight paths to be diverted, adding significant fuel costs to airlines and disruptions for travellers.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
The KNMI Data Centre (KDC) provides access to weather, climate and seismological datasets of KNMI. For each dataset descriptive information is available (metadata), including a point of contact. The KNMI Data Centre (KDC) provides access to KNMI data on weather, climate and seismology. You will find KNMI data on various topics such as: the most recent 10 minutes of observations, historical data, data on meteorological stations, modeling, earthquake data and satellite products.
The NSIDC Distributed Active Archive Center (DAAC) processes, archives, documents, and distributes data from NASA's past and current Earth Observing System (EOS) satellites and field measurement programs. The NSIDC DAAC focuses on the study of the cryosphere. The NSIDC DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) Data Centers.
World Data Center for Oceanography serves to store and provide to users data on physical, chemical and dynamical parameters of the global ocean as well as oceanography-related papers and publications, which are either came from other countries through the international exchange or provided to the international exchange by organizations of the Russian Federation
The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
LAADS DAAC is the web interface to the Level 1 and Atmosphere Archive and Distribution System (LAADS). The mission of LAADS is to provide quick and easy access to MODIS Level 1, Atmosphere and Land data products, VIIRS Level 1 and Land data products MAS and MERIS data products. MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.
The Earth Orientation Centre is responsible for monitoring of long-term earth orientation parameters, publications for time dissemination and leap second announcements.
Earthdata powered by EOSDIS (Earth Observing System Data and Information System) is a key core capability in NASA’s Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA’s Earth science data from various sources – satellites, aircraft, field measurements, and various other programs. EOSDIS uses the metadata and service discovery tool Earthdata Search The capabilities of EOSDIS constituting the EOSDIS Science Operations are managed by NASA's Earth Science Data and Information System (ESDIS) Project. The capabilities include: generation of higher level (Level 1-4) science data products for several satellite missions; archiving and distribution of data products from Earth observation satellite missions, as well as aircraft and field measurement campaigns. The EOSDIS science operations are performed within a distributed system of many interconnected nodes - Science Investigator-led Processing Systems (SIPS), and distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs) with specific responsibilities for production, archiving, and distribution of Earth science data products. The DAACs serve a large and diverse user community by providing capabilities to search and access science data products and specialized services.
Spitzer is the final mission in NASA's Great Observatories Program - a family of four orbiting observatories, each observing the Universe in a different kind of light (visible, gamma rays, X-rays, and infrared). Spitzer is also a part of NASA's Astronomical Search for Origins Program, designed to provide information which will help us understand our cosmic roots, and how galaxies, stars and planets develop and form.