Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
The PeptideAtlas validates expressed proteins to provide eukaryotic genome data. Peptide Atlas provides data to advance biological discoveries in humans. The PeptideAtlas accepts proteomic data from high-throughput processes and encourages data submission.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
The aim of the EPPO Global Database is to provide in a single portal for all pest-specific information that has been produced or collected by EPPO. The full database is available via the Internet, but when no Internet connection is available a subset of the database called ‘EPPO GD Desktop’ can be run as a software (now replacing PQR).
>>>!!!<<<2019-02-19: The repository is no longer available>>>!!!<<< >>>!!!<<<Data is archived at ChemSpider https://www.chemspider.com/Search.aspx?dsn=UsefulChem and https://www.chemspider.com/Search.aspx?dsn=Usefulchem Group Bradley Lab >>>!!!<<< see more information at the Standards tab at 'Remarks'
>>>!!!<<< The repository is no longer available. >>>!!!<<< Here you will find a collection of atomic microstructures that have been built by the atomic modeling community. Feel free to download any of these and use them in your own scientific explorations.The focus of this cyberinfrastructure is to advance the field of atomic-scale modeling of materials by acting as a forum for disseminating new atomistic scale methodologies, educating non-experts and the next generation of computational materials scientists, and serving as a bridge between the atomistic and complementary (electronic structure, mesoscale) modeling communities.
PQR is an online database of molecular properties predicted from quantum mechanics with integrated capabilities for molecular visualization and data sharing. ased on the number of molecules, PQR is currently the largest open database of molecular quantum calculations. PQR features interactive high-quality rendering of molecular structures and properties on computers, tablets, and cell phones and allows to efficiently share data via digital object identifiers (DOI) and scannable QR barcodes.
<<<!!!<<<The repository is no longer available <<<!!!<<< TOXNET has moved. Most content will continue to be collected and reviewed; selected information is accessible through PubChem, PubMed, and Bookshelf. If you have questions, please contact NLM Customer Support at https://support.nlm.nih.gov/ >>>!!!>>>
The repository is no longer available. <<<!!!<<< CCRIS information is migrated to PubChem (https://www.ncbi.nlm.nih.gov/pcsubstance?term=%22Chemical%20Carcinogenesis%20Research%20Information%20System%20(CCRIS)%22%5BSourceName%5D%20AND%20hasnohold%5Bfilt%5D) Help for CCRIS Users in PubChem: https://www.nlm.nih.gov/toxnet/Accessing_CCRIS_Content_from_PubChem.html or PDF: https://www.nlm.nih.gov/toxnet/Accessing_CCRIS_Content_from_PubChem.pdf. >>>!!!>>>
The Yeast Resource Center provides access to data about mass spectrometry, yeast two-hybrid arrays, deconvolution florescence microscopy, protein structure prediction and computational biology. These services are provided to further the goal of a complete understanding of the chemical interactions required for the maintenance and faithful reproduction of a living cell. The observation that the fundamental biological processes of yeast are conserved among all eukaryotes ensures that this knowledge will shape and advance our understanding of living systems.
The Integrated Resource for Reproducibility in Macromolecular Crystallography includes a repository system and website designed to make the raw data of protein crystallography more widely available. Our focus is on identifying, cataloging and providing the metadata related to datasets, which could be used to reprocess the original diffraction data. The intent behind this project is to make the resulting three dimensional structures more reproducible and easier to modify and improve as processing methods advance.
---<<< This repository is no longer available. This record is out-dated >>>--- The ONS challenge contains open solubility data, experiments with raw data from different scientists and institutions. It is part of the The Open Notebook Science wiki community, ideally suited for community-wide collaborative research projects involving mathematical modeling and computer simulation work, as it allows researchers to document model development in a step-by-step fashion, then link model prediction to experiments that test the model, and in turn, use feeback from experiments to evolve the model. By making our laboratory notebooks public, the evolutionary process of a model can be followed in its totality by the interested reader. Researchers from laboratories around the world can now follow the progress of our research day-to-day, borrow models at various stages of development, comment or advice on model developments, discuss experiments, ask questions, provide feedback, or otherwise contribute to the progress of science in any manner possible.